Author
Listed:
- Fleur Zeldenrust
- Pascal Chameau
- Wytse J Wadman
Abstract
Mammalian thalamocortical relay (TCR) neurons switch their firing activity between a tonic spiking and a bursting regime. In a combined experimental and computational study, we investigated the features in the input signal that single spikes and bursts in the output spike train represent and how this code is influenced by the membrane voltage state of the neuron. Identical frozen Gaussian noise current traces were injected into TCR neurons in rat brain slices as well as in a validated three-compartment TCR model cell. The resulting membrane voltage traces and spike trains were analyzed by calculating the coherence and impedance. Reverse correlation techniques gave the Event-Triggered Average (ETA) and the Event-Triggered Covariance (ETC). This demonstrated that the feature selectivity started relatively long before the events (up to 300 ms) and showed a clear distinction between spikes (selective for fluctuations) and bursts (selective for integration). The model cell was fine-tuned to mimic the frozen noise initiated spike and burst responses to within experimental accuracy, especially for the mixed mode regimes. The information content carried by the various types of events in the signal as well as by the whole signal was calculated. Bursts phase-lock to and transfer information at lower frequencies than single spikes. On depolarization the neuron transits smoothly from the predominantly bursting regime to a spiking regime, in which it is more sensitive to high-frequency fluctuations. The model was then used to elucidate properties that could not be assessed experimentally, in particular the role of two important subthreshold voltage-dependent currents: the low threshold activated calcium current (IT) and the cyclic nucleotide modulated h current (Ih). The ETAs of those currents and their underlying activation/inactivation states not only explained the state dependence of the firing regime but also the long-lasting concerted dynamic action of the two currents. Finally, the model was used to investigate the more realistic “high-conductance state”, where fluctuations are caused by (synaptic) conductance changes instead of current injection. Under “standard” conditions bursts are difficult to initiate, given the high degree of inactivation of the T-type calcium current. Strong and/or precisely timed inhibitory currents were able to remove this inactivation.Author summary: Neurons in the brain respond to (sensory) stimuli by generating electrical pulses called ‘spikes’ or ‘action potentials’. Spikes are organized in different temporal patterns, such as ‘bursts’ in which they occur at a high frequency followed by a period of silence. Bursts are ubiquitous in the nervous system: they occur in different parts of the brain and in different species. Different mechanisms that generate them have been pointed out. Why the nervous system uses bursts in its communication, or what type of information is represented by bursts, remains largely unknown. Here, we looked at bursting in thalamocortical relay (TCR) cells, neurons that form a bridge between early sensory processing and higher-order structures (cortex). These cells fire bursts as a result of the activation of two distinct subthreshold ionic currents: the T-type calcium current and the h-type current. We investigated experimentally and computationally what features in the input makes TCR cells respond with bursts, and what features with single spikes. Bursts are a response to low-frequency slowly increasing input; single spikes are a response to faster fluctuations. Moreover, bursts are rare and highly informative, in line with an earlier hypothesis that bursts could play a ‘wake-up call’ role in the nervous system.
Suggested Citation
Fleur Zeldenrust & Pascal Chameau & Wytse J Wadman, 2018.
"Spike and burst coding in thalamocortical relay cells,"
PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-36, February.
Handle:
RePEc:plo:pcbi00:1005960
DOI: 10.1371/journal.pcbi.1005960
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Nelson Espinosa & Jorge Mariño & Carmen de Labra & Javier Cudeiro, 2011.
"Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study,"
PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
- Toshiyuki Ishii & Toshihiko Hosoya, 2020.
"Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features,"
PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-30, November.
- James M McFarland & Yuwei Cui & Daniel A Butts, 2013.
"Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs,"
PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005960. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.