IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005951.html
   My bibliography  Save this article

The extent of ribosome queuing in budding yeast

Author

Listed:
  • Alon Diament
  • Anna Feldman
  • Elisheva Schochet
  • Martin Kupiec
  • Yoav Arava
  • Tamir Tuller

Abstract

Ribosome queuing is a fundamental phenomenon suggested to be related to topics such as genome evolution, synthetic biology, gene expression regulation, intracellular biophysics, and more. However, this phenomenon hasn't been quantified yet at a genomic level. Nevertheless, methodologies for studying translation (e.g. ribosome footprints) are usually calibrated to capture only single ribosome protected footprints (mRPFs) and thus limited in their ability to detect ribosome queuing. On the other hand, most of the models in the field assume and analyze a certain level of queuing. Here we present an experimental-computational approach for studying ribosome queuing based on sequencing of RNA footprints extracted from pairs of ribosomes (dRPFs) using a modified ribosome profiling protocol. We combine our approach with traditional ribosome profiling to generate a detailed profile of ribosome traffic. The data are analyzed using computational models of translation dynamics. The approach was implemented on the Saccharomyces cerevisiae transcriptome. Our data shows that ribosome queuing is more frequent than previously thought: the measured ratio of ribosomes within dRPFs to mRPFs is 0.2–0.35, suggesting that at least one to five translating ribosomes is in a traffic jam; these queued ribosomes cannot be captured by traditional methods. We found that specific regions are enriched with queued ribosomes, such as the 5’-end of ORFs, and regions upstream to mRPF peaks, among others. While queuing is related to higher density of ribosomes on the transcript (characteristic of highly translated genes), we report cases where traffic jams are relatively more severe in lowly expressed genes and possibly even selected for. In addition, our analysis demonstrates that higher adaptation of the coding region to the intracellular tRNA levels is associated with lower queuing levels. Our analysis also suggests that the Saccharomyces cerevisiae transcriptome undergoes selection for eliminating traffic jams. Thus, our proposed approach is an essential tool for high resolution analysis of ribosome traffic during mRNA translation and understanding its evolution.Author summary: During translation, multiple ribosomes may translate the same mRNA. The density of ribosomal traffic across the transcript poses several open questions, such as how often a ribosome’s path is blocked by a second ribosome, do queues of multiple ribosomes typically form on mRNAs and what is their effect on the overall translation rate of an mRNA. However, this phenomenon hasn't been quantified yet at a genomic level. Nevertheless, methodologies for monitoring translation are limited in their ability to detect ribosome queuing. On the other hand, most of the models in the field assume and analyze a certain level of queuing. Here we present an experimental-computational approach for studying ribosome queuing based on sequencing of RNA footprints extracted from pairs of adjacent translating ribosomes, and a computational model of translation dynamics. Our data shows that ribosome queuing in Saccharomyces cerevisiae is more frequent than previously thought, suggesting that at least one to five translating ribosomes is in a traffic jam; these queued ribosomes cannot be captured by traditional methods. Our analysis also suggests that the S. cerevisiae transcriptome undergoes selection for eliminating traffic jams, while specific regions and genes may possibly be under selection for increased queuing.

Suggested Citation

  • Alon Diament & Anna Feldman & Elisheva Schochet & Martin Kupiec & Yoav Arava & Tamir Tuller, 2018. "The extent of ribosome queuing in budding yeast," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-21, January.
  • Handle: RePEc:plo:pcbi00:1005951
    DOI: 10.1371/journal.pcbi.1005951
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005951
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005951&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.