Author
Listed:
- Grégory Dumont
- Alexandre Payeur
- André Longtin
Abstract
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.Author summary: In the brain, information about stimuli is encoded in the timing of action potentials produced by neurons. An understanding of this neural code is facilitated by the use of a well-established method called mean-field theory. Over the last two decades or so, mean-field theory has brought an important added value to the study of emergent properties of neural circuits. Nonetheless, in the mean-field framework, the thermodynamic limit has to be taken, that is, to postulate the number of neurons to be infinite. Doing so, small fluctuations are neglected, and the randomness so present at the cellular level disappears from the description of the circuit dynamics. The origin and functional implications of variability at the network scale are ongoing questions of interest in neuroscience. It is therefore crucial to go beyond the mean-field approach and to propose a description that fully entails the stochastic aspects of network dynamics. In this manuscript, we address this issue by showing that the dynamics of finite-size networks can be represented by stochastic partial differential equations.
Suggested Citation
Grégory Dumont & Alexandre Payeur & André Longtin, 2017.
"A stochastic-field description of finite-size spiking neural networks,"
PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-34, August.
Handle:
RePEc:plo:pcbi00:1005691
DOI: 10.1371/journal.pcbi.1005691
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005691. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.