Author
Listed:
- Yao Shen
- Mariano J Alvarez
- Brygida Bisikirska
- Alexander Lachmann
- Ronald Realubit
- Sergey Pampou
- Jorida Coku
- Charles Karan
- Andrea Califano
Abstract
A large fraction of the proteins that are being identified as key tumor dependencies represent poor pharmacological targets or lack clinically-relevant small-molecule inhibitors. Availability of fully generalizable approaches for the systematic and efficient prioritization of tumor-context specific protein activity inhibitors would thus have significant translational value. Unfortunately, inhibitor effects on protein activity cannot be directly measured in systematic and proteome-wide fashion by conventional biochemical assays. We introduce OncoLead, a novel network based approach for the systematic prioritization of candidate inhibitors for arbitrary targets of therapeutic interest. In vitro and in vivo validation confirmed that OncoLead analysis can recapitulate known inhibitors as well as prioritize novel, context-specific inhibitors of difficult targets, such as MYC and STAT3. We used OncoLead to generate the first unbiased drug/regulator interaction map, representing compounds modulating the activity of cancer-relevant transcription factors, with potential in precision medicine.Author summary: Most transcription factors are considered “undruggable” in conventional drug discovery. However, a large number of them are discovered to be key tumor dependencies. Thus, targeting these difficult targets has been a challenge for cancer drug discovery. Here, we introduce a novel method, OncoLead, that applies biological networks to identify candidate inhibitors that either directly or in-directly block the activities of these targets. This approach is confirmed by known target-inhibitor interactions in public databases. Furthermore, we predicted new inhibitors for MYC and STAT3, which are validated by in vitro assays.
Suggested Citation
Yao Shen & Mariano J Alvarez & Brygida Bisikirska & Alexander Lachmann & Ronald Realubit & Sergey Pampou & Jorida Coku & Charles Karan & Andrea Califano, 2017.
"Systematic, network-based characterization of therapeutic target inhibitors,"
PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-22, October.
Handle:
RePEc:plo:pcbi00:1005599
DOI: 10.1371/journal.pcbi.1005599
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005599. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.