IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005409.html
   My bibliography  Save this article

From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

Author

Listed:
  • Steffen Klamt
  • Georg Regensburger
  • Matthias P Gerstl
  • Christian Jungreuthmayer
  • Stefan Schuster
  • Radhakrishnan Mahadevan
  • Jürgen Zanghellini
  • Stefan Müller

Abstract

Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

Suggested Citation

  • Steffen Klamt & Georg Regensburger & Matthias P Gerstl & Christian Jungreuthmayer & Stefan Schuster & Radhakrishnan Mahadevan & Jürgen Zanghellini & Stefan Müller, 2017. "From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-22, April.
  • Handle: RePEc:plo:pcbi00:1005409
    DOI: 10.1371/journal.pcbi.1005409
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005409
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005409&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timo R Maarleveld & Meike T Wortel & Brett G Olivier & Bas Teusink & Frank J Bruggeman, 2015. "Interplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    2. Axel von Kamp & Steffen Klamt, 2014. "Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005409. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.