Author
Listed:
- Jarred R Mondoñedo
- Béla Suki
Abstract
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.Author Summary: Surgical and, more recently, bronchoscopic lung volume reduction is the only available treatments for patients with advanced stage emphysema. Several large-scale, clinical studies have outlined appropriate selection criteria based on patient outcomes; however, the underlying mechanisms determining disease progression and response to these treatments are not well-understood. To answer this question, we have developed a network model of the lung to compare immediate and long-term response to each treatment. This approach allows us to directly study macroscopic changes in function related to microscopic changes in the local structural and mechanical environment. In addition, it facilitates direct comparisons between surgical and bronchoscopic lung volume reduction given identical initial conditions, which is not feasible in a clinical study. We propose here a mechanism suggesting that lung volume reduction efficacy is intimately linked to changes in microscopic force heterogeneity within the lung. Such an understanding of the mechanisms driving emphysema has the potential to greatly improve current therapies for this condition through more rationalized, patient-specific treatment strategies.
Suggested Citation
Jarred R Mondoñedo & Béla Suki, 2017.
"Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema,"
PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-17, February.
Handle:
RePEc:plo:pcbi00:1005282
DOI: 10.1371/journal.pcbi.1005282
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.