Author
Listed:
- Florian C Rieger
- Peter Virnau
Abstract
We determine knotting probabilities and typical sizes of knots in double-stranded DNA for chains of up to half a million base pairs with computer simulations of a coarse-grained bead-stick model: Single trefoil knots and composite knots which include at least one trefoil as a prime factor are shown to be common in DNA chains exceeding 250,000 base pairs, assuming physiologically relevant salt conditions. The analysis is motivated by the emergence of DNA nanopore sequencing technology, as knots are a potential cause of erroneous nucleotide reads in nanopore sequencing devices and may severely limit read lengths in the foreseeable future. Even though our coarse-grained model is only based on experimental knotting probabilities of short DNA strands, it reproduces the correct persistence length of DNA. This indicates that knots are not only a fine gauge for structural properties, but a promising tool for the design of polymer models.Author Summary: We develop a coarse-grained model of double-stranded DNA which is solely based on experimentally determined knotting probabilities of short DNA strands. Our analysis is motivated by the emergence of DNA nanopore sequencing technology. The main advantage of nanopore sequencing in comparison to next-generation devices is its capability to sequence rather long DNA strands in a single run, currently up to ≈10,000 base pairs. Unfortunately, long DNA strands easily self-entangle into knotted conformations, and sequencing knotted DNA with nanopores may be subject to error. In our manuscript, the typical extent and likelihood of DNA knots is computed for DNA chains of up to half a million base pairs, and we estimate the abundance of complex and composite knots in relation to DNA length. Our analysis indicates that DNA knots may be a formidable roadblock for the development of devices which support substantially longer read lengths. We also show that structural properties of DNA, like its resistance to bending, are intimately linked to the molecule's tendency to form knots. We demonstrate how this connection can be utilized to introduce mathematical models of DNA which account for the molecule's overall statistical properties.
Suggested Citation
Florian C Rieger & Peter Virnau, 2016.
"A Monte Carlo Study of Knots in Long Double-Stranded DNA Chains,"
PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-11, September.
Handle:
RePEc:plo:pcbi00:1005029
DOI: 10.1371/journal.pcbi.1005029
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.