IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005000.html
   My bibliography  Save this article

Inverse Stochastic Resonance in Cerebellar Purkinje Cells

Author

Listed:
  • Anatoly Buchin
  • Sarah Rieubland
  • Michael Häusser
  • Boris S Gutkin
  • Arnd Roth

Abstract

Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.Author Summary: How neurons generate output spikes in response to various combinations of inputs is a central issue in contemporary neuroscience. Due to their large dendritic tree and complex intrinsic properties, cerebellar Purkinje cells are an important model system to study this input-output transformation. Here we examine how noise can change the parameters of this transformation. In experiments we found that spike generation in Purkinje cells can be efficiently inhibited by noise of a particular amplitude. This effect is called inverse stochastic resonance (ISR) and has previously been described only in theoretical models of neurons. We explain the mechanism underlying ISR using a simple model matching the properties of experimentally characterized Purkinje cells. We found that ISR is present in Purkinje cells when the mean input current is near threshold for spike generation. ISR can be explained by the co-existence of resting and spiking solutions of the simple model. Changes of the input noise variance change the lifetime of these resting and spiking states, suggesting a mechanism for a tunable filter with long time constants implemented by a Purkinje cell population in the cerebellum. Finally, ISR leads to locally optimal information transfer from the input to the output of a Purkinje cell.

Suggested Citation

  • Anatoly Buchin & Sarah Rieubland & Michael Häusser & Boris S Gutkin & Arnd Roth, 2016. "Inverse Stochastic Resonance in Cerebellar Purkinje Cells," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-31, August.
  • Handle: RePEc:plo:pcbi00:1005000
    DOI: 10.1371/journal.pcbi.1005000
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005000
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005000&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Clopath & Jean-Pierre Nadal & Nicolas Brunel, 2012. "Storage of Correlated Patterns in Standard and Bistable Purkinje Cell Models," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadav Ben-Shushan & Misha Tsodyks, 2017. "Stabilizing patterns in time: Neural network approach," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-16, December.
    2. Claudia Clopath & Nicolas Brunel, 2013. "Optimal Properties of Analog Perceptrons with Excitatory Weights," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-6, February.
    3. João Sacramento & Andreas Wichert & Mark C W van Rossum, 2015. "Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-24, June.
    4. Alireza Alemi & Carlo Baldassi & Nicolas Brunel & Riccardo Zecchina, 2015. "A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.