Author
Listed:
- Javier Estrada
- Natalie Andrew
- Daniel Gibson
- Frederick Chang
- Florian Gnad
- Jeremy Gunawardena
Abstract
The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell’s environment. This suggests that the external environment may be harnessed to interrogate the cell’s internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a “correct” model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology.Author Summary: We have developed a cellular interrogation methodology that combines programmable microfluidics, fluorescence microscopy and mathematical analysis and have used it to discriminate between models of repetitive Ca2+ spiking in HeLa cells. Our approach exploits the natural variability in response of individual cells in a clonal population and the non-steady state behavior of the response in each cell, thereby providing more powerful discrimination. Interrogation consists of steps or pulses of histamine of fixed concentration and width but varying frequency. Eight mathematical models of repetitive Ca2+ spiking were chosen from the literature and methods of nonlinear frequency and nonlinear amplitude analysis were developed which ruled out all but two of the models, without having to fit the models to the data. Further analysis of the remaining models yielded predictions that were experimentally confirmed. Cellular interrogation offers a general approach to ruling out competing hypotheses about molecular mechanisms, which is complementary to traditional methods of genetics and biochemistry.
Suggested Citation
Javier Estrada & Natalie Andrew & Daniel Gibson & Frederick Chang & Florian Gnad & Jeremy Gunawardena, 2016.
"Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling,"
PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-29, July.
Handle:
RePEc:plo:pcbi00:1004995
DOI: 10.1371/journal.pcbi.1004995
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004995. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.