IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004984.html
   My bibliography  Save this article

Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

Author

Listed:
  • Chao Huang
  • Andrey Resnik
  • Tansu Celikel
  • Bernhard Englitz

Abstract

Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.Author Summary: A neuron is a tiny computer that transforms electrical inputs into electrical outputs. While neurons have been investigated and modeled for many decades, some aspects remain elusive. Recently, it was demonstrated that the membrane (voltage) state of a neuron determines its threshold to spiking. In the present study we asked, what are the consequences of this dependence for the computation the neuron performs. We find that this so called adaptive threshold allows neurons to be more focused on inputs which arrive close in time with other inputs. Also, it allows neurons to represent their information more robustly, such that a readout of their activity is less influenced by the state the brain is in. The present use of information theory provides a solid foundation for these results. We obtained the results primarily in detailed simulations, but performed neural recordings to verify these properties in real neurons. In summary, an adaptive spiking threshold allows neurons to specifically compute robustly with a focus on tight temporal correlations in their input.

Suggested Citation

  • Chao Huang & Andrey Resnik & Tansu Celikel & Bernhard Englitz, 2016. "Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-25, June.
  • Handle: RePEc:plo:pcbi00:1004984
    DOI: 10.1371/journal.pcbi.1004984
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004984
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004984&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.