IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004659.html
   My bibliography  Save this article

Structural and Energetic Characterization of the Ankyrin Repeat Protein Family

Author

Listed:
  • R Gonzalo Parra
  • Rocío Espada
  • Nina Verstraete
  • Diego U Ferreiro

Abstract

Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins.Author Summary: Some natural proteins are formed with repetitions of similar amino acid stretches. Ankyrin-repeat proteins constitute one of the most abundant families of this class of proteins that serve as model systems to analyze how variations in sequences exert effects in structures and biological functions. We present an in-depth analysis of the ankyrin repeat protein family, characterizing the variations in the repeating arrays both at the structural and energetic level. We introduce a consistent annotation for the repeat characteristics and describe how the structural differences are related to the sequences by their underlying energetic signatures.

Suggested Citation

  • R Gonzalo Parra & Rocío Espada & Nina Verstraete & Diego U Ferreiro, 2015. "Structural and Energetic Characterization of the Ankyrin Repeat Protein Family," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
  • Handle: RePEc:plo:pcbi00:1004659
    DOI: 10.1371/journal.pcbi.1004659
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004659
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004659&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    2. Maria I. Freiberger & Victoria Ruiz-Serra & Camila Pontes & Miguel Romero-Durana & Pablo Galaz-Davison & Cesar A. Ramírez-Sarmiento & Claudio D. Schuster & Marcelo A. Marti & Peter G. Wolynes & Diego , 2023. "Local energetic frustration conservation in protein families and superfamilies," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.