Author
Listed:
- Dario Cuevas Rivera
- Sebastian Bitzer
- Stefan J Kiebel
Abstract
The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.Author Summary: Odor recognition in the insect brain is amazingly fast but still not fully understood. It is known that recognition is performed in three stages. In the first stage, the sensors respond to an odor by displaying a reproducible neuronal pattern. This code is turned, in the second and third stages, into a sparse code, that is, only relatively few neurons activate over hundreds of milliseconds. It is generally assumed that the insect brain uses this temporal code to recognize an odor. We propose a new model of how this temporal code emerges using sequential activation of groups of neurons. We show that these sequential activations underlie a fast and accurate recognition which is highly robust against neuronal or sensory noise. This model replicates several key experimental findings and explains how the insect brain achieves both speed and robustness of odor recognition as observed in experiments.
Suggested Citation
Dario Cuevas Rivera & Sebastian Bitzer & Stefan J Kiebel, 2015.
"Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference,"
PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-31, October.
Handle:
RePEc:plo:pcbi00:1004528
DOI: 10.1371/journal.pcbi.1004528
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.