IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004521.html
   My bibliography  Save this article

On the Adjacency Matrix of RyR2 Cluster Structures

Author

Listed:
  • Mark A Walker
  • Tobias Kohl
  • Stephan E Lehnart
  • Joseph L Greenstein
  • W J Lederer
  • Raimond L Winslow

Abstract

In the heart, electrical stimulation of cardiac myocytes increases the open probability of sarcolemmal voltage-sensitive Ca2+ channels and flux of Ca2+ into the cells. This increases Ca2+ binding to ligand-gated channels known as ryanodine receptors (RyR2). Their openings cause cell-wide release of Ca2+, which in turn causes muscle contraction and the generation of the mechanical force required to pump blood. In resting myocytes, RyR2s can also open spontaneously giving rise to spatially-confined Ca2+ release events known as “sparks.” RyR2s are organized in a lattice to form clusters in the junctional sarcoplasmic reticulum membrane. Our recent work has shown that the spatial arrangement of RyR2s within clusters strongly influences the frequency of Ca2+ sparks. We showed that the probability of a Ca2+ spark occurring when a single RyR2 in the cluster opens spontaneously can be predicted from the precise spatial arrangements of the RyR2s. Thus, “function” follows from “structure.” This probability is related to the maximum eigenvalue (λ1) of the adjacency matrix of the RyR2 cluster lattice. In this work, we develop a theoretical framework for understanding this relationship. We present a stochastic contact network model of the Ca2+ spark initiation process. We show that λ1 determines a stability threshold for the formation of Ca2+ sparks in terms of the RyR2 gating transition rates. We recapitulate these results by applying the model to realistic RyR2 cluster structures informed by super-resolution stimulated emission depletion (STED) microscopy. Eigendecomposition of the linearized mean-field contact network model reveals functional subdomains within RyR2 clusters with distinct sensitivities to Ca2+. This work provides novel perspectives on the cardiac Ca2+ release process and a general method for inferring the functional properties of transmembrane receptor clusters from their structure.Author Summary: Many transmembrane receptors have been shown to aggregate into supramolecular clusters that enhance sensitivity to external stimuli in a variety of cell types. Advances in super-resolution microscopy have enabled researchers to study these structures with sufficient detail to distinguish the precise locations of individual receptors. In the heart, efforts have been successful in imaging calcium release channels, which are found in clusters of up to ∼ 100 in the sarcoplasmic reticulum membrane of cardiac myocytes. We showed in a recent study how the precise cluster structure affects the frequency of spontaneous release events known as calcium “sparks.” Here we have developed an analytical model of calcium spark initiation that clearly illustrates how the structure controls spark likelihood. We then applied this model to a collection of channel cluster structures obtained using super-resolution microscopy, revealing spatial gradients in the functional properties of individual channels. This work provides insight into the calcium release process in the heart and a framework for evaluating functional heterogeneity in populations of receptor clusters using structural information alone.

Suggested Citation

  • Mark A Walker & Tobias Kohl & Stephan E Lehnart & Joseph L Greenstein & W J Lederer & Raimond L Winslow, 2015. "On the Adjacency Matrix of RyR2 Cluster Structures," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
  • Handle: RePEc:plo:pcbi00:1004521
    DOI: 10.1371/journal.pcbi.1004521
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004521
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004521&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.