IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004465.html
   My bibliography  Save this article

Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis

Author

Listed:
  • Wei Zhang
  • Jae-Woong Chang
  • Lilong Lin
  • Kay Minn
  • Baolin Wu
  • Jeremy Chien
  • Jeongsik Yong
  • Hui Zheng
  • Rui Kuang

Abstract

High-throughput mRNA sequencing (RNA-Seq) is widely used for transcript quantification of gene isoforms. Since RNA-Seq data alone is often not sufficient to accurately identify the read origins from the isoforms for quantification, we propose to explore protein domain-domain interactions as prior knowledge for integrative analysis with RNA-Seq data. We introduce a Network-based method for RNA-Seq-based Transcript Quantification (Net-RSTQ) to integrate protein domain-domain interaction network with short read alignments for transcript abundance estimation. Based on our observation that the abundances of the neighboring isoforms by domain-domain interactions in the network are positively correlated, Net-RSTQ models the expression of the neighboring transcripts as Dirichlet priors on the likelihood of the observed read alignments against the transcripts in one gene. The transcript abundances of all the genes are then jointly estimated with alternating optimization of multiple EM problems. In simulation Net-RSTQ effectively improved isoform transcript quantifications when isoform co-expressions correlate with their interactions. qRT-PCR results on 25 multi-isoform genes in a stem cell line, an ovarian cancer cell line, and a breast cancer cell line also showed that Net-RSTQ estimated more consistent isoform proportions with RNA-Seq data. In the experiments on the RNA-Seq data in The Cancer Genome Atlas (TCGA), the transcript abundances estimated by Net-RSTQ are more informative for patient sample classification of ovarian cancer, breast cancer and lung cancer. All experimental results collectively support that Net-RSTQ is a promising approach for isoform quantification. Net-RSTQ toolbox is available at http://compbio.cs.umn.edu/Net-RSTQ/.Author Summary: New sequencing technologies for transcriptome-wide profiling of RNAs have greatly promoted the interest in isoform-based functional characterizations of a cellular system. Elucidation of gene expressions at the isoform resolution could lead to new molecular mechanisms such as gene-regulations and alternative splicings, and potentially better molecular signals for phenotype predictions. However, it could be overly optimistic to derive the proportion of the isoforms of a gene solely based on short read alignments. Inherently, systematical sampling biases from RNA library preparation and ambiguity of read origins in overlapping isoforms pose a problem in reliability. The work in this paper exams the possibility of using protein domain-domain interactions as prior knowledge in isoform transcript quantification. We first made the observation that protein domain-domain interactions positively correlate with isoform co-expressions in TCGA data and then designed a probabilistic EM approach to integrate domain-domain interactions with short read alignments for estimation of isoform proportions. Validated by qRT-PCR experiments on three cell lines, simulations and classifications of TCGA patient samples in several cancer types, Net-RSTQ is proven a useful tool for isoform-based analysis in functional genomes and systems biology.

Suggested Citation

  • Wei Zhang & Jae-Woong Chang & Lilong Lin & Kay Minn & Baolin Wu & Jeremy Chien & Jeongsik Yong & Hui Zheng & Rui Kuang, 2015. "Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-24, December.
  • Handle: RePEc:plo:pcbi00:1004465
    DOI: 10.1371/journal.pcbi.1004465
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004465
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004465&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.