IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004391.html
   My bibliography  Save this article

miRTex: A Text Mining System for miRNA-Gene Relation Extraction

Author

Listed:
  • Gang Li
  • Karen E Ross
  • Cecilia N Arighi
  • Yifan Peng
  • Cathy H Wu
  • K Vijay-Shanker

Abstract

MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes.Author Summary: MicroRNAs (miRNAs) are an important class of RNAs that regulate a wide range of biological processes by post-transcriptional regulation of gene expression. The amount of literature describing experimentally validated miRNA targets is increasing rapidly, which poses a challenge to researchers and biocurators to stay up-to-date with the available information. Text mining methods have been used to extract miRNA-gene associated pairs and assist in curation. In this paper, we describe miRTex, a text mining system that extracts miRNA-target, miRNA-gene regulation and gene-miRNA regulation relations. We evaluate miRTex performance on two corpora, and show that the elaborate use of lexico-syntactic information and linguistic generalizations enables it to achieve the state-of-the-art performance. We have processed the all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset with miRTex, and provide a website to access the extraction results from all the Medline abstracts. The full-scale text mining results will be a useful resource for miRNA researchers, while the miRTex tool itself can be integrated into literature-based curation pipelines. We present two use cases (for animal and plant miRNAs, respectively) that show how the full-scale text mining can be used in combination with other bioinformatics resources to gain insight into biological processes.

Suggested Citation

  • Gang Li & Karen E Ross & Cecilia N Arighi & Yifan Peng & Cathy H Wu & K Vijay-Shanker, 2015. "miRTex: A Text Mining System for miRNA-Gene Relation Extraction," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-24, September.
  • Handle: RePEc:plo:pcbi00:1004391
    DOI: 10.1371/journal.pcbi.1004391
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004391
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004391&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.