IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004235.html
   My bibliography  Save this article

Quantification of Interactions between Dynamic Cellular Network Functionalities by Cascaded Layering

Author

Listed:
  • Thomas P Prescott
  • Moritz Lang
  • Antonis Papachristodoulou

Abstract

Large, naturally evolved biomolecular networks typically fulfil multiple functions. When modelling or redesigning such systems, functional subsystems are often analysed independently first, before subsequent integration into larger-scale computational models. In the design and analysis process, it is therefore important to quantitatively analyse and predict the dynamics of the interactions between integrated subsystems; in particular, how the incremental effect of integrating a subsystem into a network depends on the existing dynamics of that network. In this paper we present a framework for simulating the contribution of any given functional subsystem when integrated together with one or more other subsystems. This is achieved through a cascaded layering of a network into functional subsystems, where each layer is defined by an appropriate subset of the reactions. We exploit symmetries in our formulation to exhaustively quantify each subsystem’s incremental effects with minimal computational effort. When combining subsystems, their isolated behaviour may be amplified, attenuated, or be subject to more complicated effects. We propose the concept of mutual dynamics to quantify such nonlinear phenomena, thereby defining the incompatibility and cooperativity between all pairs of subsystems when integrated into any larger network. We exemplify our theoretical framework by analysing diverse behaviours in three dynamic models of signalling and metabolic pathways: the effect of crosstalk mechanisms on the dynamics of parallel signal transduction pathways; reciprocal side-effects between several integral feedback mechanisms and the subsystems they stabilise; and consequences of nonlinear interactions between elementary flux modes in glycolysis for metabolic engineering strategies. Our analysis shows that it is not sufficient to just specify subsystems and analyse their pairwise interactions; the environment in which the interaction takes place must also be explicitly defined. Our framework provides a natural representation of nonlinear interaction phenomena, and will therefore be an important tool for modelling large-scale evolved or synthetic biomolecular networks.Author Summary: To better understand the dynamic behaviour of cells and their interaction with the environment, mathematical models describing the interplay between proteins, metabolites or signalling molecules are used extensively in Systems Biology. Typically, such models focus on single functional subsystems and neglect the rest of the biochemical reaction network. However, the behaviour of multiple functional subsystems when integrated together can differ significantly from each subsystem’s isolated behaviour. In this article we describe a methodology for assessing the nonlinear effects of combining multiple functional subsystems of a biological system. This is key for answering questions related to Systems and Synthetic Biology as well as Metabolic Engineering. For example, if we can identify the isolated behaviours of two subsystems, we can determine if they persist when the subsystems interact. Similarly, we can show how modifications to single functional subsystems (such as increasing particular metabolic yields) have different effects in the context of the integrated system.

Suggested Citation

  • Thomas P Prescott & Moritz Lang & Antonis Papachristodoulou, 2015. "Quantification of Interactions between Dynamic Cellular Network Functionalities by Cascaded Layering," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-31, May.
  • Handle: RePEc:plo:pcbi00:1004235
    DOI: 10.1371/journal.pcbi.1004235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004235
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.