IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004080.html
   My bibliography  Save this article

A Theoretical Justification for Single Molecule Peptide Sequencing

Author

Listed:
  • Jagannath Swaminathan
  • Alexander A Boulgakov
  • Edward M Marcotte

Abstract

The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences) to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.Author Summary: The development of next-generation DNA and RNA sequencing methods has transformed biology, with current platforms generating >1 billion sequencing reads per run. Unfortunately, no method of similar scale and throughput exists to identify and quantify specific proteins in complex mixtures, representing a critical bottleneck in many biochemical and molecular diagnostic assays. What is urgently needed is a massively parallel method, akin to next-gen DNA sequencing, for identifying and quantifying peptides or proteins in a sample. In principle, single-molecule peptide sequencing could achieve this goal, allowing billions of distinct peptides to be sequenced in parallel and thereby identifying proteins composing the sample and digitally quantifying them by direct counting of peptides. Here, we discuss theoretical considerations of single molecule peptide sequencing, suggest one possible experimental strategy, and, using computer simulations, characterize the potential utility and unusual properties of this future proteomics technology.

Suggested Citation

  • Jagannath Swaminathan & Alexander A Boulgakov & Edward M Marcotte, 2015. "A Theoretical Justification for Single Molecule Peptide Sequencing," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:plo:pcbi00:1004080
    DOI: 10.1371/journal.pcbi.1004080
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004080
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004080&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles L. Sawyers, 2008. "The cancer biomarker problem," Nature, Nature, vol. 452(7187), pages 548-552, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Wu & Bogdana Borca & Suman Sen & Sebastian Koslowski & Sabine Abb & Daniel Pablo Rosenblatt & Aurelio Gallardo & Jesús I. Mendieta-Moreno & Matyas Nachtigall & Pavel Jelinek & Stephan Rauschenbach , 2023. "Molecular sensitised probe for amino acid recognition within peptide sequences," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anyou Wang & Ying Du & Qianchuan He & Chunxiao Zhou, 2013. "A Quantitative System for Discriminating Induced Pluripotent Stem Cells, Embryonic Stem Cells and Somatic Cells," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    2. Jixiong Wang & Ashish Patel & James M.S. Wason & Paul J. Newcombe, 2022. "Two‐stage penalized regression screening to detect biomarker–treatment interactions in randomized clinical trials," Biometrics, The International Biometric Society, vol. 78(1), pages 141-150, March.
    3. Xiaohong Li & Patricia L Blount & Thomas L Vaughan & Brian J Reid, 2011. "Application of Biomarkers in Cancer Risk Management: Evaluation from Stochastic Clonal Evolutionary and Dynamic System Optimization Points of View," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-7, February.
    4. Anders Dahl Henriksen & Mikkel Wennemoes Hvitfeld Ley & Henrik Flyvbjerg & Mikkel Fougt Hansen, 2015. "Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.