IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004018.html
   My bibliography  Save this article

Protein-Protein Docking with Dynamic Residue Protonation States

Author

Listed:
  • Krishna Praneeth Kilambi
  • Kavan Reddy
  • Jeffrey J Gray

Abstract

Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys) on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161) the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc–FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.Author Summary: Protein-protein interactions are fundamental for biological function and are strongly influenced by their local environment. Cellular pH is tightly controlled and is one of the critical environmental factors that regulates protein-protein interactions. Three-dimensional structures of the protein complexes can help us understand the mechanism of the interactions. Since experimental determination of the structures of protein-protein complexes is expensive and time-consuming, computational docking algorithms are helpful to predict the structures. However, none of the current protein-protein docking algorithms account for the critical environmental pH effects. So we developed a pH-sensitive docking algorithm that can dynamically pick the favorable protonation states of the ionizable amino-acid residues. Compared to our previous standard docking algorithm, the new algorithm improves docking accuracy and generates higher-quality predictions over a large dataset of protein-protein complexes. We also use a case study to demonstrate efficacy of the algorithm in predicting a large pH-dependent binding affinity change that cannot be captured by the other methods that neglect pH effects. In principle, the approaches in the study can be used for rational design of pH-dependent protein inhibitors or industrial enzymes that are active over a wide range of pH values.

Suggested Citation

  • Krishna Praneeth Kilambi & Kavan Reddy & Jeffrey J Gray, 2014. "Protein-Protein Docking with Dynamic Residue Protonation States," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:plo:pcbi00:1004018
    DOI: 10.1371/journal.pcbi.1004018
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004018
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004018&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne Lopes & Sophie Sacquin-Mora & Viktoriya Dimitrova & Elodie Laine & Yann Ponty & Alessandra Carbone, 2013. "Protein-Protein Interactions in a Crowded Environment: An Analysis via Cross-Docking Simulations and Evolutionary Information," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004018. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.