Author
Listed:
- Mary A. Rohrdanz
- Wenwei Zheng
- Bradley Lambeth
- Jocelyne Vreede
- Cecilia Clementi
Abstract
The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.Author Summary: Many protein systems of biological interest undergo dynamical changes on a time scale too long to be modeled using standard computational methods. One example is photoactive yellow protein (PYP), found in several bacterial species. Blue light, potentially harmful for DNA, triggers several structural changes in PYP, eventually resulting in a conformation that changes the swimming behavior of bacteria. This conformation is difficult to investigate, as it is too short lived. In addition, understanding this “signaling state” is computationally difficult because of the long timescale of the transition. We overcome this by constructing a coarse-grained model to rapidly induce transitions to the signaling state. We then reconstruct and further sample the all-atom configurations from these coarse-grained representations. Our results are consistent with all available experimental and computational evidence.
Suggested Citation
Mary A. Rohrdanz & Wenwei Zheng & Bradley Lambeth & Jocelyne Vreede & Cecilia Clementi, 2014.
"Multiscale Approach to the Determination of the Photoactive Yellow Protein Signaling State Ensemble,"
PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
Handle:
RePEc:plo:pcbi00:1003797
DOI: 10.1371/journal.pcbi.1003797
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003797. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.