IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003711.html
   My bibliography  Save this article

Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features

Author

Listed:
  • Mahmoud Ghandi
  • Dongwon Lee
  • Morteza Mohammad-Noori
  • Michael A Beer

Abstract

Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. Author Summary: Genomic regulatory elements (enhancers, promoters, and insulators) control the expression of their target genes and are widely believed to play a key role in human development and disease by altering protein concentrations. A fundamental step in understanding enhancers is the development of DNA sequence-based models to predict the tissue specific activity of regulatory elements. Such models facilitate both the identification of the molecular pathways which impinge on enhancer activity through direct transcription factor binding, and the direct evaluation of the impact of specific common or rare genetic variants on enhancer function. We have previously developed a successful sequence-based model for enhancer prediction using a k-mer support vector machine (kmer-SVM). Here, we address a significant limitation of the kmer-SVM approach and present an alternative method using gapped k-mers (gkm-SVM) which exhibits dramatically improved accuracy in all test cases. While we focus on enhancers and transcription factor binding, our method can be applied to improve a much broader class of sequence analysis problems, including proteins and RNA. In addition, we expect that most k-mer based methods can be significantly improved by simply using the generalized k-mer count method that we present in this paper. We believe this improved model will enable significant contributions to our understanding of the human regulatory system.

Suggested Citation

  • Mahmoud Ghandi & Dongwon Lee & Morteza Mohammad-Noori & Michael A Beer, 2014. "Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1003711
    DOI: 10.1371/journal.pcbi.1003711
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003711
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003711&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seong Kyu Han & Michelle T. McNulty & Christopher J. Benway & Pei Wen & Anya Greenberg & Ana C. Onuchic-Whitford & Dongkeun Jang & Jason Flannick & Noël P. Burtt & Parker C. Wilson & Benjamin D. Humph, 2023. "Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Manu Setty & Christina S Leslie, 2015. "SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-21, May.
    3. David R Kelley, 2020. "Cross-species regulatory sequence activity prediction," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-27, July.
    4. Feng Jiang & Shou-Ye Hu & Wen Tian & Nai-Ning Wang & Ning Yang & Shan-Shan Dong & Hui-Miao Song & Da-Jin Zhang & Hui-Wu Gao & Chen Wang & Hao Wu & Chang-Yi He & Dong-Li Zhu & Xiao-Feng Chen & Yan Guo , 2024. "A landscape of gene expression regulation for synovium in arthritis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Koh Onimaru & Osamu Nishimura & Shigehiro Kuraku, 2020. "Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    6. Jin Woo Oh & Michael A. Beer, 2024. "Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.