Author
Listed:
- Fabrizio Pucci
- Marianne Rooman
Abstract
The unraveling and control of protein stability at different temperatures is a fundamental problem in biophysics that is substantially far from being quantitatively and accurately solved, as it requires a precise knowledge of the temperature dependence of amino acid interactions. In this paper we attempt to gain insight into the thermal stability of proteins by designing a tool to predict the full stability curve as a function of the temperature for a set of 45 proteins belonging to 11 homologous families, given their sequence and structure, as well as the melting temperature () and the change in heat capacity () of proteins belonging to the same family. Stability curves constitute a fundamental instrument to analyze in detail the thermal stability and its relation to the thermodynamic stability, and to estimate the enthalpic and entropic contributions to the folding free energy. In summary, our approach for predicting the protein stability curves relies on temperature-dependent statistical potentials derived from three datasets of protein structures with targeted thermal stability properties. Using these potentials, the folding free energies () at three different temperatures were computed for each protein. The Gibbs-Helmholtz equation was then used to predict the protein's stability curve as the curve that best fits these three points. The results are quite encouraging: the standard deviations between the experimental and predicted 's, 's and folding free energies at room temperature () are equal to 13 , 1.3 ) and 4.1 , respectively, in cross-validation. The main sources of error and some further improvements and perspectives are briefly discussed.Author Summary: The prediction of protein stability remains one of the key goals of protein science. Despite the significant efforts of the last decades, faster and more accurate stability predictors on the proteomic-wide scale are currently demanded. The determination and control of protein stability are indeed fundamental steps on the path towards de novo design. In this paper we develop a method for predicting the stability curve of proteins. This curve encodes the temperature dependence of the folding free energy (). Its knowledge is important in the study of protein stability since all the thermodynamic parameters characterizing the folding transition can be extracted from it. Our prediction method is based on temperature-dependent mean force potentials and uses the tertiary structure of the target protein as well as the melting temperature () and the heat capacity change () of some other proteins belonging to the same family. From the predicted stability curves, the , the and the at room temperature can be inferred. The predictions obtained are compared with experimental data and show reasonable performances.
Suggested Citation
Fabrizio Pucci & Marianne Rooman, 2014.
"Stability Curve Prediction of Homologous Proteins Using Temperature-Dependent Statistical Potentials,"
PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-11, July.
Handle:
RePEc:plo:pcbi00:1003689
DOI: 10.1371/journal.pcbi.1003689
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003689. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.