Author
Listed:
- Noah Youngs
- Duncan Penfold-Brown
- Richard Bonneau
- Dennis Shasha
Abstract
Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).Author Summary: Many machine learning methods have been applied to the task of predicting the biological function of proteins based on a variety of available data. The majority of these methods require negative examples: proteins that are known not to perform a function, in order to achieve meaningful predictions, but negative examples are often not available. In addition, past heuristic methods for negative example selection suffer from a high error rate. Here, we rigorously compare two novel algorithms against past heuristics, as well as some algorithms adapted from a similar task in text-classification. Through this comparison, performed on several different benchmarks, we demonstrate that our algorithms make significantly fewer mistakes when predicting negative examples. We also provide a database of negative examples for general use in machine learning for protein function prediction (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).
Suggested Citation
Noah Youngs & Duncan Penfold-Brown & Richard Bonneau & Dennis Shasha, 2014.
"Negative Example Selection for Protein Function Prediction: The NoGO Database,"
PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-12, June.
Handle:
RePEc:plo:pcbi00:1003644
DOI: 10.1371/journal.pcbi.1003644
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003644. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.