Author
Listed:
- Rodolphe Thiébaut
- Julia Drylewicz
- Mélanie Prague
- Christine Lacabaratz
- Stéphanie Beq
- Ana Jarne
- Thérèse Croughs
- Rafick-Pierre Sekaly
- Michael M Lederman
- Irini Sereti
- Daniel Commenges
- Yves Lévy
Abstract
Exogenous Interleukin-7 (IL-7), in supplement to antiretroviral therapy, leads to a substantial increase of all CD4+ T cell subsets in HIV-1 infected patients. However, the quantitative contribution of the several potential mechanisms of action of IL-7 is unknown. We have performed a mathematical analysis of repeated measurements of total and naive CD4+ T cells and their Ki67 expression from HIV-1 infected patients involved in three phase I/II studies (N = 53 patients). We show that, besides a transient increase of peripheral proliferation, IL-7 exerts additional effects that play a significant role in CD4+ T cell dynamics up to 52 weeks. A decrease of the loss rate of the total CD4+ T cell is the most probable explanation. If this effect could be maintained during repeated administration of IL-7, our simulation study shows that such a strategy may allow maintaining CD4+ T cell counts above 500 cells/µL with 4 cycles or fewer over a period of two years. This in-depth analysis of clinical data revealed the potential for IL-7 to achieve sustained CD4+ T cell restoration with limited IL-7 exposure in HIV-1 infected patients with immune failure despite antiretroviral therapy.Author Summary: HIV infection is characterized by a decrease of CD4+ T-lymphocytes in the blood. Whereas antiretroviral treatment succeeds to control viral replication, some patients fail to reconstitute their CD4+ T cell count to normal value. IL-7 is a promising cytokine under evaluation for its use in HIV infection, in supplement to antiretroviral therapy, as it increases cell proliferation and survival. Here, we use data from three clinical trials testing the effect of IL-7 on CD4+ T-cell recovery in treated HIV-infected individuals and use a simple mathematical model to quantify IL-7 effects by estimating the biological parameters of the model. We show that the increase of peripheral proliferation could not explain alone the long-term dynamics of T cells after IL-7 injections underlining other important effects such as the improvement of cell survival. We also investigate the feasibility and the efficiency of repetitions of IL-7 cycles and argue for further evaluation through clinical trials.
Suggested Citation
Rodolphe Thiébaut & Julia Drylewicz & Mélanie Prague & Christine Lacabaratz & Stéphanie Beq & Ana Jarne & Thérèse Croughs & Rafick-Pierre Sekaly & Michael M Lederman & Irini Sereti & Daniel Commenges , 2014.
"Quantifying and Predicting the Effect of Exogenous Interleukin-7 on CD4+T Cells in HIV-1 Infection,"
PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-12, May.
Handle:
RePEc:plo:pcbi00:1003630
DOI: 10.1371/journal.pcbi.1003630
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.