Author
Listed:
- Doron Shem-Tov
- Eran Halperin
Abstract
Recent technological improvements in the field of genetic data extraction give rise to the possibility of reconstructing the historical pedigrees of entire populations from the genotypes of individuals living today. Current methods are still not practical for real data scenarios as they have limited accuracy and assume unrealistic assumptions of monogamy and synchronized generations. In order to address these issues, we develop a new method for pedigree reconstruction, , which is based on formulations of the pedigree reconstruction problem as variants of graph coloring. The new formulation allows us to consider features that were overlooked by previous methods, resulting in a reconstruction of up to 5 generations back in time, with an order of magnitude improvement of false-negatives rates over the state of the art, while keeping a lower level of false positive rates. We demonstrate the accuracy of compared to previous approaches using simulation studies over a range of population sizes, including inbred and outbred populations, monogamous and polygamous mating patterns, as well as synchronous and asynchronous mating.Author Summary: Learning the correct relationships between individuals from genetic data is a basic theoretical problem in the field of genetics, and has many practical consequences. A wide variety of statistical methods for genetic analysis assume the relationships between individuals are known, and can manifest relatedness information to improve inference. The current state-of-the-art methods for relationship inference consider pair-wise genetic similarity, and use it to infer the relationship between each pair of individuals. Reconstructing the pedigrees of an entire population directly has the potential to use more elaborate relationship information, and thus obtains a better prediction of the familial relationships in the population. In contrast to the full set of pair-wise relationships in a population, genetic pedigrees provide a lossless and conflict-free structure for depicting the relationships between individuals. In an effort to make pedigree reconstruction practical we developed a new method, which is an order of magnitude more accurate than previous methods, and is the first method that has the ability to reconstruct polygamous pedigrees.
Suggested Citation
Doron Shem-Tov & Eran Halperin, 2014.
"Historical Pedigree Reconstruction from Extant Populations Using PArtitioning of RElatives (PREPARE),"
PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-13, June.
Handle:
RePEc:plo:pcbi00:1003610
DOI: 10.1371/journal.pcbi.1003610
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.