IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003539.html
   My bibliography  Save this article

Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method

Author

Listed:
  • Ke Tang
  • Jinfeng Zhang
  • Jie Liang

Abstract

Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine experimentally and challenging to model computationally. Conformation sampling and energy evaluation are the two key components in loop modeling. We have developed a new method for loop conformation sampling and prediction based on a chain growth sequential Monte Carlo sampling strategy, called Distance-guided Sequential chain-Growth Monte Carlo (DiSGro). With an energy function designed specifically for loops, our method can efficiently generate high quality loop conformations with low energy that are enriched with near-native loop structures. The average minimum global backbone RMSD for 1,000 conformations of 12-residue loops is Å, with a lowest energy RMSD of Å, and an average ensemble RMSD of Å. A novel geometric criterion is applied to speed up calculations. The computational cost of generating 1,000 conformations for each of the x loops in a benchmark dataset is only about cpu minutes for 12-residue loops, compared to ca cpu minutes using the FALCm method. Test results on benchmark datasets show that DiSGro performs comparably or better than previous successful methods, while requiring far less computing time. DiSGro is especially effective in modeling longer loops (– residues).Author Summary: Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine experimentally and challenging to model computationally. Despite significant progress made in the past in loop modeling, current methods still cannot generate near-native loop conformations rapidly. In this study, we develop a fast chain-growth method for loop modeling, called Distance-guided Sequential chain-Growth Monte Carlo (DiSGro), to efficiently generate high quality near-native loop conformations. The generated loops can be used directly for downstream applications or as candidates for further refinement.

Suggested Citation

  • Ke Tang & Jinfeng Zhang & Jie Liang, 2014. "Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
  • Handle: RePEc:plo:pcbi00:1003539
    DOI: 10.1371/journal.pcbi.1003539
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003539
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003539&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pu Liu & Fangqiang Zhu & Dmitrii N Rassokhin & Dimitris K Agrafiotis, 2009. "A Self-Organizing Algorithm for Modeling Protein Loops," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Li & Jian Zhang & Jun Wang & Wenfei Li & Wei Wang, 2016. "Structure Prediction of RNA Loops with a Probabilistic Approach," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun Joo & Archana G Chavan & Ryan Day & Kristin P Lennox & Paul Sukhanov & David B Dahl & Marina Vannucci & Jerry Tsai, 2011. "Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.