Author
Listed:
- Noah C Benson
- Omar H Butt
- David H Brainard
- Geoffrey K Aguirre
Abstract
Several domains of neuroscience offer map-like models that link location on the cortical surface to properties of sensory representation. Within cortical visual areas V1, V2, and V3, algebraic transformations can relate position in the visual field to the retinotopic representation on the flattened cortical sheet. A limit to the practical application of this structure-function model is that the cortex, while topologically a two-dimensional surface, is curved. Flattening of the curved surface to a plane unavoidably introduces local geometric distortions that are not accounted for in idealized models. Here, we show that this limitation is overcome by correcting the geometric distortion induced by cortical flattening. We use a mass-spring-damper simulation to create a registration between functional MRI retinotopic mapping data of visual areas V1, V2, and V3 and an algebraic model of retinotopy. This registration is then applied to the flattened cortical surface anatomy to create an anatomical template that is linked to the algebraic retinotopic model. This registered cortical template can be used to accurately predict the location and retinotopic organization of these early visual areas from cortical anatomy alone. Moreover, we show that prediction accuracy remains when extrapolating beyond the range of data used to inform the model, indicating that the registration reflects the retinotopic organization of visual cortex. We provide code for the mass-spring-damper technique, which has general utility for the registration of cortical structure and function beyond the visual cortex.Author Summary: A two-dimensional projection of the visual world, termed a retinotopic map, is spread across the striate and extra-striate areas of the human brain. The organization of retinotopic maps has been described with algebraic functions that map position in the visual field to points on the cortical surface. These functions represent the cortical surface as a flat sheet. In fact, the surface of the brain is intrinsically curved. Flattening the cortical surface thus introduces geometric distortions of the cortical sheet that limit the fitting of algebraic functions to actual brain imaging data. We present a technique to fix the problem of geometric distortions. We collected retinotopic mapping data using functional MRI from a group of people. We treated the cortical surface as a mass-spring-damper system and corrected the topology of the cortical surface to register the functional imaging data to an algebraic model of retinotopic organization. From this registration we construct a template that is able to predict the retinotopic organization of cortical visual areas V1, V2, and V3 using only the brain anatomy of a subject. The accuracy of this prediction is comparable to that of functional measurement itself.
Suggested Citation
Noah C Benson & Omar H Butt & David H Brainard & Geoffrey K Aguirre, 2014.
"Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy,"
PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-9, March.
Handle:
RePEc:plo:pcbi00:1003538
DOI: 10.1371/journal.pcbi.1003538
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003538. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.