Author
Listed:
- Arnaud Messé
- David Rudrauf
- Habib Benali
- Guillaume Marrelec
Abstract
Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks.Author Summary: By analogy with the road network, the human brain is defined both by its anatomy (the ‘roads’), that is, the way neurons are shaped, clustered together and connected to each others and its dynamics (the ‘traffic’): electrical and chemical signals of various types, shapes and strength constantly propagate through the brain to support its sensorimotor and cognitive functions, its capacity to learn and adapt to disease, and to create consciousness. While anatomy and dynamics are organically intertwined (anatomy contributes to shape dynamics), the nature and strength of this relation remain largely mysterious. Various hypotheses have been proposed and tested using modern neuroimaging techniques combined with mathematical models of brain activity. In this study, we demonstrate the existence (and quantify the contribution) of a dynamical regime in the brain, coined ‘stationary’, that appears to be largely induced and shaped by the underlying anatomy. We also reveal the critical importance of specific anatomical connections in shaping the global anatomo-functional structure of this dynamical regime, notably connections between hemispheres.
Suggested Citation
Arnaud Messé & David Rudrauf & Habib Benali & Guillaume Marrelec, 2014.
"Relating Structure and Function in the Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and Non-stationarities,"
PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-9, March.
Handle:
RePEc:plo:pcbi00:1003530
DOI: 10.1371/journal.pcbi.1003530
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003530. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.