IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003512.html
   My bibliography  Save this article

Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations

Author

Listed:
  • Hazem Toutounji
  • Gordon Pipa

Abstract

It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings.Author Summary: The world is not perceived as a chain of segmented sensory still lifes. Instead, it appears that the brain is capable of integrating the temporal dependencies of the incoming sensory stream with the spatial aspects of that input. It then transfers the resulting whole in a useful manner, in order to reach a coherent and causally sound image of our physical surroundings, and to act within it. These spatiotemporal computations are made possible through a cluster of local and coexisting adaptation mechanisms known collectively as neuronal plasticity. While this role is widely known and supported by experimental evidence, no unifying theory of how the brain, through the interaction of plasticity mechanisms, gets to represent spatiotemporal computations in its spatiotemporal activity. In this paper, we aim at such a theory. We develop a rigorous mathematical formalism of spatiotemporal representations within the input-driven dynamics of cortical networks. We demonstrate that the interaction of two of the most common plasticity mechanisms, intrinsic and synaptic plasticity, leads to representations that allow for spatiotemporal computations. We also show that these representations are structured to tolerate noise and to even benefit from it.

Suggested Citation

  • Hazem Toutounji & Gordon Pipa, 2014. "Spatiotemporal Computations of an Excitable and Plastic Brain: Neuronal Plasticity Leads to Noise-Robust and Noise-Constructive Computations," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-20, March.
  • Handle: RePEc:plo:pcbi00:1003512
    DOI: 10.1371/journal.pcbi.1003512
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003512
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003512&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.