IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003466.html
   My bibliography  Save this article

Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations

Author

Listed:
  • Florian Lesaint
  • Olivier Sigaud
  • Shelly B Flagel
  • Terry E Robinson
  • Mehdi Khamassi

Abstract

Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational neuroscience studies may be useful.Author Summary: Acquisition of responses towards full predictors of rewards, namely Pavlovian conditioning, has long been explained using the reinforcement learning theory. This theory formalizes learning processes that, by attributing values to situations and actions, makes it possible to direct behaviours towards rewarding objectives. Interestingly, the implied mechanisms rely on a reinforcement signal that parallels the activity of dopamine neurons in such experiments. However, recent studies challenged the classical view of explaining Pavlovian conditioning with a single process. When presented with a lever whose retraction preceded the delivery of food, some rats started to chew and bite the food magazine whereas others chew and bite the lever, even if no interactions were necessary to get the food. These differences were also visible in brain activity and when tested with drugs, suggesting the coexistence of multiple systems. We present a computational model that extends the classical theory to account for these data. Interestingly, we can draw predictions from this model that may be experimentally verified. Inspired by mechanisms used to model instrumental behaviours, where actions are required to get rewards, and advanced Pavlovian behaviours (such as overexpectation, negative patterning), it offers an entry point to start modelling the strong interactions observed between them.

Suggested Citation

  • Florian Lesaint & Olivier Sigaud & Shelly B Flagel & Terry E Robinson & Mehdi Khamassi, 2014. "Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-18, February.
  • Handle: RePEc:plo:pcbi00:1003466
    DOI: 10.1371/journal.pcbi.1003466
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003466
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003466&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.