IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003362.html
   My bibliography  Save this article

A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion

Author

Listed:
  • Alexander M Walter
  • Paulo S Pinheiro
  • Matthijs Verhage
  • Jakob B Sørensen

Abstract

Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors.Author Summary: The release of neurotransmitter involves the rapid Ca2+-dependent fusion of vesicles with the plasma membrane. Kinetic heterogeneity is ubiquitous in secretory systems, with fast phases of release on the millisecond time scale being followed by slower phases. In the absence of synaptotagmin-1 – the Ca2+sensor for fast fusion – the fast phase of release is absent, while slower phases remain. To account for this, mathematical models incorporated several releasable vesicle pools with separate Ca2+ sensors. However, there is no clear evidence for parallel release pathways. We suggest a sequential model for Ca2+-dependent neurotransmitter release in adrenal chromaffin cells. We assume only a single releasable vesicle pool, and a Ca2+-dependent catalytic refilling process from a limited upstream vesicle pool. This model can produce kinetic heterogeneity and does better than the previous Parallel Pool Model in predicting the Ca2+-dependence of releasable pool refilling and the consequences of SNARE-protein mutation. It further accounts for the release in the absence of synaptotagmin-1 by assuming that the releasable vesicle pool is depleted, leading to slow and Ca2+-dependent fusion from the upstream pool, but through the same release pathway. Thus, we suggest that the elusive ‘alternative Ca2+ sensor’ is an upstream priming protein, rather than a parallel Ca2+ sensor.

Suggested Citation

  • Alexander M Walter & Paulo S Pinheiro & Matthijs Verhage & Jakob B Sørensen, 2013. "A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-15, December.
  • Handle: RePEc:plo:pcbi00:1003362
    DOI: 10.1371/journal.pcbi.1003362
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003362
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003362&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.