IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003232.html
   My bibliography  Save this article

Collective Dynamics Underlying Allosteric Transitions in Hemoglobin

Author

Listed:
  • Martin D Vesper
  • Bert L de Groot

Abstract

Hemoglobin is the prototypic allosteric protein. Still, its molecular allosteric mechanism is not fully understood. To elucidate the mechanism of cooperativity on an atomistic level, we developed a novel computational technique to analyse the coupling of tertiary and quaternary motions. From Molecular Dynamics simulations showing spontaneous quaternary transitions, we separated the transition trajectories into two orthogonal sets of motions: one consisting of intra-chain motions only (referred to as tertiary-only) and one consisting of global inter-chain motions only (referred to as quaternary-only). The two underlying subspaces are orthogonal by construction and their direct sum is the space of full motions. Using Functional Mode Analysis, we were able to identify a collective coordinate within the tertiary-only subspace that is correlated to the most dominant motion within the quaternary-only motions, hence providing direct insight into the allosteric coupling mechanism between tertiary and quaternary conformation changes. This coupling-motion is substantially different from tertiary structure changes between the crystallographic structures of the T- and R-state. We found that hemoglobin's allosteric mechanism of communication between subunits is equally based on hydrogen bonds and steric interactions. In addition, we were able to affect the T-to-R transition rates by choosing different histidine protonation states, thereby providing a possible atomistic explanation for the Bohr effect.Author Summary: Hemoglobin transports oxygen from our lungs to other tissues. Its effectiveness in binding and unbinding of oxygen is based on a type of regulation called allostery. Thereby, already bound oxygen molecules in either of the four binding sites of hemoglobin increase the likelihood of oxygen binding in the other sites; the sites act cooperatively. It is known that the four protein chains of hemoglobin – each containing one oxygen binding site – need to rearrange globally or the cooperativity is lost. But how do the individual chains communicate with each other in this rearrangement? This is still not resolved on the molecular level. By applying the computational technique of molecular dynamics simulations we were able to simulate the motions of the individual atoms of hemoglobin during such a global rearrangement. We present a novel method that allows to directly analyse the coupling of motions within and between the four protein chains and thereby reveal the allosteric mechanism. That allows us to classify which amino acids are important for the cooperativity and in what way: by either pushing other amino acids away or attracting them. Also, we have observed in simulations how pH differences could affect the cooperativity.

Suggested Citation

  • Martin D Vesper & Bert L de Groot, 2013. "Collective Dynamics Underlying Allosteric Transitions in Hemoglobin," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-8, September.
  • Handle: RePEc:plo:pcbi00:1003232
    DOI: 10.1371/journal.pcbi.1003232
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003232
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003232&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jochen S Hub & Marcus B Kubitzki & Bert L de Groot, 2010. "Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003232. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.