Author
Listed:
- Denis Bucher
- Yuan-Hao Hsu
- Varnavas D Mouchlis
- Edward A Dennis
- J Andrew McCammon
Abstract
Group VI Ca2+-independent phospholipase A2 (iPLA2) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA2 or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA2 in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA2 at the membrane surface. The models show that an anchoring region (residues 710–724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA2 models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA2 and related enzymes.Author Summary: The Ca2+-independent phospholipase A2 (iPLA2) enzyme is a potential target for the development of medicinal agents against heart and neurological diseases, multiple sclerosis, arthritis, and cancer. However, no structural information is currently available for the iPLA2. The binding of the enzyme to human membranes is driven by favorable electrostatic and non-polar interactions, but the detailed influence of these factors is not well understood. In this paper, we have combined coarse-grained and all-atom simulations of a homology model of the iPLA2. The coarse-grained description allows highly efficient simulations of the protein insertion into a lipid bilayer, while the all-atom simulations are used to refine the structures of the protein–membrane complexes. Finally, the resulting structures are validated experimentally with deuterium exchange experiments. In future works, this approach could be used to build models of other PLA2s. The iPLA2 models presented here open the door to the computational design of new inhibitors with improved potency and selectivity.
Suggested Citation
Denis Bucher & Yuan-Hao Hsu & Varnavas D Mouchlis & Edward A Dennis & J Andrew McCammon, 2013.
"Insertion of the Ca2+-Independent Phospholipase A2 into a Phospholipid Bilayer via Coarse-Grained and Atomistic Molecular Dynamics Simulations,"
PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-10, July.
Handle:
RePEc:plo:pcbi00:1003156
DOI: 10.1371/journal.pcbi.1003156
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003156. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.