IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003069.html
   My bibliography  Save this article

The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch

Author

Listed:
  • Wei Huang
  • Joohyun Kim
  • Shantenu Jha
  • Fareed Aboul-ela

Abstract

Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (

Suggested Citation

  • Wei Huang & Joohyun Kim & Shantenu Jha & Fareed Aboul-ela, 2013. "The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
  • Handle: RePEc:plo:pcbi00:1003069
    DOI: 10.1371/journal.pcbi.1003069
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003069
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003069&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rebecca K. Montange & Robert T. Batey, 2006. "Structure of the S-adenosylmethionine riboswitch regulatory mRNA element," Nature, Nature, vol. 441(7097), pages 1172-1175, June.
    2. Marc Parisien & François Major, 2008. "The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data," Nature, Nature, vol. 452(7183), pages 51-55, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Liu & Shi-Jie Chen, 2012. "Coarse-Grained Prediction of RNA Loop Structures," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
    2. Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
    3. Ge Han & Yi Xue, 2022. "Rational design of hairpin RNA excited states reveals multi-step transitions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Michael F Sloma & David H Mathews, 2017. "Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-23, November.
    5. Jun Li & Jian Zhang & Jun Wang & Wenfei Li & Wei Wang, 2016. "Structure Prediction of RNA Loops with a Probabilistic Approach," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-17, August.
    6. Jes Frellsen & Ida Moltke & Martin Thiim & Kanti V Mardia & Jesper Ferkinghoff-Borg & Thomas Hamelryck, 2009. "A Probabilistic Model of RNA Conformational Space," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-11, June.
    7. Antoine Soulé & Vladimir Reinharz & Roman Sarrazin-Gendron & Alain Denise & Jérôme Waldispühl, 2021. "Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    8. Mélanie Boudard & Julie Bernauer & Dominique Barth & Johanne Cohen & Alain Denise, 2015. "GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    9. Solomon Shiferaw Beyene & Tianyi Ling & Blagoj Ristevski & Ming Chen, 2020. "A novel riboswitch classification based on imbalanced sequences achieved by machine learning," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-23, July.
    10. Wenkai Wang & Chenjie Feng & Renmin Han & Ziyi Wang & Lisha Ye & Zongyang Du & Hong Wei & Fa Zhang & Zhenling Peng & Jianyi Yang, 2023. "trRosettaRNA: automated prediction of RNA 3D structure with transformer network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Carla L. Esposito & Ida Autiero & Annamaria Sandomenico & H. Li & Mahmoud A. Bassal & Maria L. Ibba & Dongfang Wang & Lucrezia Rinaldi & Simone Ummarino & Giulia Gaggi & Marta Borchiellini & Piotr Swi, 2023. "Targeted systematic evolution of an RNA platform neutralizing DNMT1 function and controlling DNA methylation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Jiaqiang Zhu & Wei Huang & Jing Zhao & Loc Huynh & Derek J. Taylor & Michael E. Harris, 2022. "Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.