Author
Listed:
- Jeffrey E Markowitz
- Elizabeth Ivie
- Laura Kligler
- Timothy J Gardner
Abstract
Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex behaviors are assembled from more elementary, stereotyped modules. Author Summary: Bird songs range in form from the simple notes of a Chipping Sparrow to the complex repertoire of the nightingale. Recent studies suggest that bird songs may contain non-adjacent dependencies where the choice of what to sing next depends on the history of what has already been produced. However, the complexity of these rules has not been examined statistically for the most elaborate avian singers. Here we show that one complex singer—the domesticated canary—produces a song that is strongly influenced by long-range rules. The choice of how long to repeat a given note or which note to choose next depends on the history of the song, and these dependencies span intervals of time much longer than previously assumed for birdsong. Like most forms of human music, the songs of canaries contain patterns expressed over long timescales, governed by rules that apply to multiple levels of a temporal hierarchy. This vocal complexity provides a valuable model to examine how ordered behaviors are assembled from more elementary neural components in a relatively simple neural circuit.
Suggested Citation
Jeffrey E Markowitz & Elizabeth Ivie & Laura Kligler & Timothy J Gardner, 2013.
"Long-range Order in Canary Song,"
PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-12, May.
Handle:
RePEc:plo:pcbi00:1003052
DOI: 10.1371/journal.pcbi.1003052
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003052. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.