Author
Listed:
- Daniel L Parton
- Alex Tek
- Marc Baaden
- Mark S P Sansom
Abstract
The association of hemagglutinin (HA) with lipid rafts in the plasma membrane is an important feature of the assembly process of influenza virus A. Lipid rafts are thought to be small, fluctuating patches of membrane enriched in saturated phospholipids, sphingolipids, cholesterol and certain types of protein. However, raft-associating transmembrane (TM) proteins generally partition into Ld domains in model membranes, which are enriched in unsaturated lipids and depleted in saturated lipids and cholesterol. The reason for this apparent disparity in behavior is unclear, but model membranes differ from the plasma membrane in a number of ways. In particular, the higher protein concentration in the plasma membrane may influence the partitioning of membrane proteins for rafts. To investigate the effect of high local protein concentration, we have conducted coarse-grained molecular dynamics (CG MD) simulations of HA clusters in domain-forming bilayers. During the simulations, we observed a continuous increase in the proportion of raft-type lipids (saturated phospholipids and cholesterol) within the area of membrane spanned by the protein cluster. Lateral diffusion of unsaturated lipids was significantly attenuated within the cluster, while saturated lipids were relatively unaffected. On this basis, we suggest a possible explanation for the change in lipid distribution, namely that steric crowding by the slow-diffusing proteins increases the chemical potential for unsaturated lipids within the cluster region. We therefore suggest that a local aggregation of HA can be sufficient to drive association of the protein with raft-type lipids. This may also represent a general mechanism for the targeting of TM proteins to rafts in the plasma membrane, which is of functional importance in a wide range of cellular processes.Author Summary: The cell membrane is composed of a wide variety of lipids and proteins. Until recently, these were thought to be mixed evenly, but we now have evidence of the existence of “lipid rafts” — small, slow-moving areas of membrane in which certain types of lipid and protein accumulate. Rafts have many important biological functions in healthy cells, but also play a role in the assembly of influenza virus. For example, after the viral protein hemagglutinin is made inside the host cell, it accumulates in rafts. Exiting virus particles then take these portions of cell membrane with them as they leave the host cell. However, the mechanism by which proteins associate with lipid rafts is unclear. Here, we have used computers to simulate lipid membranes containing hemagglutinin. The simulations allow us to look in detail at the motions and interactions of individual proteins and lipids. We found that clusters of proteins altered the properties of nearby lipids, leading to accumulation of raft-type lipids. It therefore appears that aggregation of hemagglutinin may be enough to drive its association with rafts. This helps us to better understand both the influenza assembly process and the properties of lipid rafts.
Suggested Citation
Daniel L Parton & Alex Tek & Marc Baaden & Mark S P Sansom, 2013.
"Formation of Raft-Like Assemblies within Clusters of Influenza Hemagglutinin Observed by MD Simulations,"
PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-10, April.
Handle:
RePEc:plo:pcbi00:1003034
DOI: 10.1371/journal.pcbi.1003034
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.