IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002977.html
   My bibliography  Save this article

Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage

Author

Listed:
  • Katarzyna Bozek
  • Thomas Lengauer
  • Saleta Sierra
  • Rolf Kaiser
  • Francisco S Domingues

Abstract

The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived ‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/. Author Summary: Human Immunodeficiency Virus (HIV) requires one of the chemokine coreceptors CCR5 or CXCR4 for entry into the host cell. The capacity of the virus to use one or both of these coreceptors is termed tropism. Monitoring HIV tropism is of high importance due to the relationship of the emergence of CXCR4-tropic virus with the progression of immunodeficiency and for patient treatment with the recently developed CCR5 antagonists. Computational methods for predicting HIV tropism are based on sequence and on structure of the third variable region (V3 loop) of the viral gp120 protein — the major determinant of the HIV tropism. Limitations of the existing methods include the limited insights they provide into the biochemical determinants of coreceptor usage, high computational load of the structure-based methods and low prediction accuracy on clinically derived patient samples. Here we propose a numerical descriptor of the V3 loop encoding the physicochemical and structural properties of the loop. The new descriptor allows for server-based prediction of viral tropism with accuracy comparable to that of established sequence-based methods both on clonal and clinically derived patient data as well as for the interpretation of the properties of the loop relevant for tropism. The server is available under http://structure.bioinf.mpi-inf.mpg.de/.

Suggested Citation

  • Katarzyna Bozek & Thomas Lengauer & Saleta Sierra & Rolf Kaiser & Francisco S Domingues, 2013. "Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1002977
    DOI: 10.1371/journal.pcbi.1002977
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002977
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002977&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oliver Sander & Tobias Sing & Ingolf Sommer & Andrew J Low & Peter K Cheung & P Richard Harrigan & Thomas Lengauer & Francisco S Domingues, 2007. "Structural Descriptors of gp120 V3 Loop for the Prediction of HIV-1 Coreceptor Usage," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002977. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.