IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002950.html
   My bibliography  Save this article

Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models

Author

Listed:
  • Per Larsson
  • Peter M Kasson

Abstract

Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations. Author Summary: Membrane fusion is a common process critical to both cellular function and infection by enveloped viruses. Influenza is a particularly useful model system for studying fusion because the fusion reaction is accomplished by a single protein, hemagglutinin. Furthermore, mutations to the membrane-inserted portion of hemagglutinin have been identified that do not detectably alter the rest of the protein but can either arrest fusion halfway or block it entirely. For influenza at least, it seems that the membrane-inserted hemagglutinin peptide plays a critical role in promoting fusion, perhaps by increasing the local disorder of lipid bilayers. However, we lack a mechanistic understanding sufficient to predict the activity of fusion peptide mutants from their sequence. Here, we have used lipid tail protrusion as a way to measure how much fusion peptides disorder their surrounding bilayer; we see a strong relationship between lipid tail protrusion and the ability of fusion peptide mutants to promote lipid mixing between membranes. Our simulations also predict that this lipid tail protrusion is much more common when the peptides adopt a kinked helix structure than when they are straight or hairpin-like. We therefore hypothesize that, while all three types of structure likely undergo conformational exchange, the kinked helix structure is most active in promoting fusion.

Suggested Citation

  • Per Larsson & Peter M Kasson, 2013. "Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1002950
    DOI: 10.1371/journal.pcbi.1002950
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002950
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002950&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.