IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002874.html
   My bibliography  Save this article

Cost and Effects of Different Admission Screening Strategies to Control the Spread of Methicillin-resistant Staphylococcus aureus

Author

Listed:
  • Tanya Gurieva
  • Martin C J Bootsma
  • Marc J M Bonten

Abstract

Nosocomial infection rates due to antibiotic-resistant bacteriae, e.g., methicillin-resistant Staphylococcus aureus (MRSA) remain high in most countries. Screening for MRSA carriage followed by barrier precautions for documented carriers (so-called screen and isolate (S&I)) has been successful in some, but not all settings. Moreover, different strategies have been proposed, but comparative studies determining their relative effects and costs are not available. We, therefore, used a mathematical model to evaluate the effect and costs of different S&I strategies and to identify the critical parameters for this outcome. The dynamic stochastic simulation model consists of 3 hospitals with general wards and intensive care units (ICUs) and incorporates readmission of carriers of MRSA. Patient flow between ICUs and wards was based on real observations. Baseline prevalence of MRSA was set at 20% in ICUs and hospital-wide at 5%; ranges of costs and infection rates were based on published data. Four S&I strategies were compared to a do-nothing scenario: S&I of previously documented carriers (“flagged” patients); S&I of flagged patients and ICU admissions; S&I of flagged and group of “frequent” patients; S&I of all hospital admissions (universal screening). Evaluated levels of efficacy of S&I were 10%, 25%, 50% and 100%. Our model predicts that S&I of flagged and S&I of flagged and ICU patients are the most cost-saving strategies with fastest return of investment. For low isolation efficacy universal screening and S&I of flagged and “frequent” patients may never become cost-saving. Universal screening is predicted to prevent hardly more infections than S&I of flagged and “frequent” patients, albeit at higher costs. Whether an intervention becomes cost-saving within 10 years critically depends on costs per infection in ICU, costs of screening and isolation efficacy. Author Summary: Within hospitals antibiotic-resistance of bacteria is common and it complicates treatment of bacterial infections. Screening of patients on admission for carriage of methicillin-resistant Staphylococcus aureus (MRSA) allows for strategies where carriers are treated with barrier precautions, e.g., isolation in single-bedrooms. At least theoretically, this should prevent spread of these bacteria. Several screen-and-isolate studies have been performed. However, the outcome was not unequivocal, possibly because clinical trials to determine the optimal screening strategy would necessitate long periods of follow-up due to stochasticity. In the absence of direct evidence we have used mathematical modelling to quantify the theoretical effectiveness and expenses of different screen-and-isolate strategies in hospitals with a high prevalence of antibiotic-resistant bacteria. We find that a strategy to screen patients who were previously known as carriers, possibly combined with screening of ICU-patients is the most cost-saving strategy for the best estimate of isolation efficacy of 25%. With a high efficacy of isolation all strategies are expected to become cost-saving compared to the do-nothing scenario.

Suggested Citation

  • Tanya Gurieva & Martin C J Bootsma & Marc J M Bonten, 2013. "Cost and Effects of Different Admission Screening Strategies to Control the Spread of Methicillin-resistant Staphylococcus aureus," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-11, February.
  • Handle: RePEc:plo:pcbi00:1002874
    DOI: 10.1371/journal.pcbi.1002874
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002874
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002874&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.