Author
Listed:
- Jens Vindahl Kringelum
- Claus Lundegaard
- Ole Lund
- Morten Nielsen
Abstract
The interaction between antibodies and antigens is one of the most important immune system mechanisms for clearing infectious organisms from the host. Antibodies bind to antigens at sites referred to as B-cell epitopes. Identification of the exact location of B-cell epitopes is essential in several biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and antibodies are generally raised against the antigen in a given biological context not against the antigen monomer. Improper dealing with these aspects leads to many artificial false positive predictions and hence to incorrect low performance values. To demonstrate the impact of proper benchmark definitions, we here present an updated version of the DiscoTope method incorporating a novel spatial neighborhood definition and half-sphere exposure as surface measure. Compared to other state-of-the-art prediction methods, Discotope-2.0 displayed improved performance both in cross-validation and in independent evaluations. Using DiscoTope-2.0, we assessed the impact on performance when using proper benchmark definitions. For 13 proteins in the training data set where sufficient biological information was available to make a proper benchmark redefinition, the average AUC performance was improved from 0.791 to 0.824. Similarly, the average AUC performance on an independent evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version of DiscoTope is available at www.cbs.dtu.dk/services/DiscoTope-2.0. Author Summary: The human immune system has an incredible ability to fight pathogens (bacterial, fungal and viral infections). One of the most important immune system events involved in clearing infectious organisms is the interaction between the antibodies and antigens (molecules such as proteins from the pathogenic organism). Antibodies bind to antigens at sites known as B-cell epitopes. Hence, identification of areas on the surface antigens capable of binding to antibodies (also known as B-cell epitopes) may aid the development of various immune related applications (e.g. vaccines and immunotherapeutic). However, experimental identification of B-cell epitopes is a resource intensive task, thereby making computer-aided methods an appealing complementary approach. Previously reported performances of methods for B cell epitope predictive have been moderate. Here, we present an updated version of the B-cell epitope prediction method; DiscoTope, that on the basis of a protein structure and epitope propensity scores predicts residues likely to be involved in B-cell epitopes. We demonstrate that the low performances to some extent can be explained by poorly defined benchmarks, and that inclusion of additional biological information greatly enhances the predictive performance. This suggests that, given proper benchmark definitions, state-of-the-art B cell epitope prediction methods perform significantly better than generally assumed.
Suggested Citation
Jens Vindahl Kringelum & Claus Lundegaard & Ole Lund & Morten Nielsen, 2012.
"Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking,"
PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-10, December.
Handle:
RePEc:plo:pcbi00:1002829
DOI: 10.1371/journal.pcbi.1002829
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002829. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.