IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002529.html
   My bibliography  Save this article

Exploring Massive, Genome Scale Datasets with the GenometriCorr Package

Author

Listed:
  • Alexander Favorov
  • Loris Mularoni
  • Leslie M Cope
  • Yulia Medvedeva
  • Andrey A Mironov
  • Vsevolod J Makeev
  • Sarah J Wheelan

Abstract

We have created a statistically grounded tool for determining the correlation of genomewide data with other datasets or known biological features, intended to guide biological exploration of high-dimensional datasets, rather than providing immediate answers. The software enables several biologically motivated approaches to these data and here we describe the rationale and implementation for each approach. Our models and statistics are implemented in an R package that efficiently calculates the spatial correlation between two sets of genomic intervals (data and/or annotated features), for use as a metric of functional interaction. The software handles any type of pointwise or interval data and instead of running analyses with predefined metrics, it computes the significance and direction of several types of spatial association; this is intended to suggest potentially relevant relationships between the datasets. Availability and implementation: The package, GenometriCorr, can be freely downloaded at http://genometricorr.sourceforge.net/. Installation guidelines and examples are available from the sourceforge repository. The package is pending submission to Bioconductor.

Suggested Citation

  • Alexander Favorov & Loris Mularoni & Leslie M Cope & Yulia Medvedeva & Andrey A Mironov & Vsevolod J Makeev & Sarah J Wheelan, 2012. "Exploring Massive, Genome Scale Datasets with the GenometriCorr Package," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-12, May.
  • Handle: RePEc:plo:pcbi00:1002529
    DOI: 10.1371/journal.pcbi.1002529
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002529
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002529&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darshan Bryner & Stephen Criscione & Andrew Leith & Quyen Huynh & Fred Huffer & Nicola Neretti, 2017. "GINOM: A statistical framework for assessing interval overlap of multiple genomic features," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-16, June.
    2. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Adel Al Jord & Gaëlle Letort & Soline Chanet & Feng-Ching Tsai & Christophe Antoniewski & Adrien Eichmuller & Christelle Da Silva & Jean-René Huynh & Nir S. Gov & Raphaël Voituriez & Marie-Émilie Terr, 2022. "Cytoplasmic forces functionally reorganize nuclear condensates in oocytes," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Pedro Madrigal & Siwei Deng & Yuliang Feng & Stefania Militi & Kim Jee Goh & Reshma Nibhani & Rodrigo Grandy & Anna Osnato & Daniel Ortmann & Stephanie Brown & Siim Pauklin, 2023. "Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    5. Alan Y. Du & Jason D. Chobirko & Xiaoyu Zhuo & Cédric Feschotte & Ting Wang, 2024. "Regulatory transposable elements in the encyclopedia of DNA elements," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Liana Goehring & Sarah Keegan & Sudipta Lahiri & Wenxin Xia & Michael Kong & Judit Jimenez-Sainz & Dipika Gupta & Ronny Drapkin & Ryan B. Jensen & Duncan J. Smith & Eli Rothenberg & David Fenyö & Tony, 2024. "Dormant origin firing promotes head-on transcription-replication conflicts at transcription termination sites in response to BRCA2 deficiency," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.