IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002521.html
   My bibliography  Save this article

The Layer-Oriented Approach to Declarative Languages for Biological Modeling

Author

Listed:
  • Ivan Raikov
  • Erik De Schutter

Abstract

We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. Author Summary: The pursuit for understanding of neural function by computational modeling has produced a variety of software tools, with each tool targeting specific audiences and often requiring input in its own distinct language. Consequently, comprehending and communicating neuroscience models is a difficult and time-consuming task. In this paper we suggest a new approach towards designing biological modeling languages, which we call the layer-oriented approach. The approach stems from the observation that diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), which are structured according to some biological principles. Our proposal is illustrated by means of a computer language for describing computational models of ionic currents. The language consists of rules for expressing mathematical equations as well as rules to organize these equations according to the specific terminology used by neuroscientists. The layer-oriented approach offers two chief advantages. First, it allows the flexible use of mathematical equations to represent many different kinds of biological models. Second, it restricts the language within a framework of biological concepts so that existing modeling software can be reused. The goal of the layer-oriented approach is to help define appropriate notations for computational biology while enabling interoperability of software for biological modeling.

Suggested Citation

  • Ivan Raikov & Erik De Schutter, 2012. "The Layer-Oriented Approach to Declarative Languages for Biological Modeling," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-21, May.
  • Handle: RePEc:plo:pcbi00:1002521
    DOI: 10.1371/journal.pcbi.1002521
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002521
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002521&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.