IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002261.html
   My bibliography  Save this article

Trade-Offs and Constraints in Allosteric Sensing

Author

Listed:
  • Bruno MC Martins
  • Peter S Swain

Abstract

Sensing extracellular changes initiates signal transduction and is the first stage of cellular decision-making. Yet relatively little is known about why one form of sensing biochemistry has been selected over another. To gain insight into this question, we studied the sensing characteristics of one of the biochemically simplest of sensors: the allosteric transcription factor. Such proteins, common in microbes, directly transduce the detection of a sensed molecule to changes in gene regulation. Using the Monod-Wyman-Changeux model, we determined six sensing characteristics – the dynamic range, the Hill number, the intrinsic noise, the information transfer capacity, the static gain, and the mean response time – as a function of the biochemical parameters of individual sensors and of the number of sensors. We found that specifying one characteristic strongly constrains others. For example, a high dynamic range implies a high Hill number and a high capacity, and vice versa. Perhaps surprisingly, these constraints are so strong that most of the space of characteristics is inaccessible given biophysically plausible ranges of parameter values. Within our approximations, we can calculate the probability distribution of the numbers of input molecules that maximizes information transfer and show that a population of one hundred allosteric transcription factors can in principle distinguish between more than four bands of input concentrations. Our results imply that allosteric sensors are unlikely to have been selected for high performance in one sensing characteristic but for a compromise in the performance of many. Author Summary: Sensing environmental changes is the first step in the process of cellular decision-making, but many different biochemical sensors exist and why one sensor is selected for a particular task over another is not known. Here we study the sensing properties of a simple and generic allosteric sensor to understand the effectiveness and limitations of its “design”. We begin by defining and calculating a set of six engineering-inspired characteristics of the sensor’s response and investigate how specifying a high performance in one characteristic constrains the sensor’s performance in others. We determine many such trade-offs and, perhaps surprisingly, that much of the space of characteristics is inaccessible given biophysically plausible ranges of parameters. Our results suggest that allosteric sensors are not under selection for high performance in one sensing characteristic but for a compromise in performance between many. Our approach provides both quantitative and qualitative insights about the function and robustness of allosteric sensors and as such is applicable to both the study of endogenous systems and the design of synthetic ones.

Suggested Citation

  • Bruno MC Martins & Peter S Swain, 2011. "Trade-Offs and Constraints in Allosteric Sensing," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-13, November.
  • Handle: RePEc:plo:pcbi00:1002261
    DOI: 10.1371/journal.pcbi.1002261
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002261
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002261&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonila Lagunes & Lee Bardwell & German A Enciso, 2020. "Effect of magnitude and variability of energy of activation in multisite ultrasensitive biochemical processes," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-26, August.
    2. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.