IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002241.html
   My bibliography  Save this article

NHE Inhibition Does Not Improve Na+ or Ca2+ Overload During Reperfusion: Using Modeling to Illuminate the Mechanisms Underlying a Therapeutic Failure

Author

Listed:
  • Byron N Roberts
  • David J Christini

Abstract

Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function. Author Summary: Myocardial ischemia, commonly observed when arteries supplying the heart become occluded, results when cardiac tissue receives inadequate blood perfusion. In order to minimize the amount of cardiac damage, ischemic tissue must be reperfused. However, reperfusion can result in deleterious effects that leave the heart muscle sicker than if the ischemia had been allowed to continue. Examples of these reperfusion injuries include lethal arrhythmias and an increased region of cell death. Some of the early events that result in reperfusion injury include changes in pH and an overload of sodium inside the cell. During reperfusion, the sodium-proton exchanger (NHE) removes protons from the cell in an effort to restore normal pH, in turn importing sodium ions. Many strategies have been attempted to prevent reperfusion injury, including inhibition of the NHE, with little clinical effect. Using a mathematical model that we developed to study ischemia and reperfusion in cardiac cells, we found that NHE inhibition produces more severe sodium overload, largely due to adverse consequences of the delayed pH recovery produced by NHE inhibition. These results suggest that NHE inhibition alone may not be a viable strategy, and that therapies which prolong intracellular acidosis may be problematic.

Suggested Citation

  • Byron N Roberts & David J Christini, 2011. "NHE Inhibition Does Not Improve Na+ or Ca2+ Overload During Reperfusion: Using Modeling to Illuminate the Mechanisms Underlying a Therapeutic Failure," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-19, October.
  • Handle: RePEc:plo:pcbi00:1002241
    DOI: 10.1371/journal.pcbi.1002241
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002241
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002241&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.