IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002220.html
   My bibliography  Save this article

Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response

Author

Listed:
  • Yaakov Maman
  • Ran Nir-Paz
  • Yoram Louzoun

Abstract

The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested. Author Summary: Bacterial proteins are mainly exposed to B-cells and CD4+ T-cells, while CD8+ T-cells (CTL) typically respond to viruses. The limitation of the CTL response to viruses results from processing pathways of epitopes presented to CTLs. These epitopes usually stem from proteins expressed in the cytosol. Such proteins are eventually degraded and presented on MHC-I molecules to CTLs. However bacterial Type III secretion system (T3SS) effectors also have an access to the host cytosol and may also be exposed to CTL response. Thus, we can assume that this group of proteins undergoes selection against the presentation of CTL epitopes, as seen in viral proteins. Using multiple epitope prediction algorithms, we show that most T3SS effectors, as well as LLO, and ActA in Listeria monocytogenes and ESAT-6 proteins in Mycobacterium tuberculosis, are systematically selected to reduce the number and quality of their epitopes. The exception in this respect is the Pseudomonas aeruginosa effector ExoU that has high density of high quality epitopes. Since ExoU is known to induce rapid cell death in hosts cells, we assume that P.aeruginosa utilize the immune response to induce such death. The E.coli epitope density is highly variable among strains.

Suggested Citation

  • Yaakov Maman & Ran Nir-Paz & Yoram Louzoun, 2011. "Bacteria Modulate the CD8+ T Cell Epitope Repertoire of Host Cytosol-Exposed Proteins to Manipulate the Host Immune Response," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-12, October.
  • Handle: RePEc:plo:pcbi00:1002220
    DOI: 10.1371/journal.pcbi.1002220
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002220
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002220&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.