IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002117.html
   My bibliography  Save this article

A Neurocomputational Model of Stimulus-Specific Adaptation to Oddball and Markov Sequences

Author

Listed:
  • Robert Mill
  • Martin Coath
  • Thomas Wennekers
  • Susan L Denham

Abstract

Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response. Author Summary: For processing real-life auditory scenes, it is not enough that auditory neurons code only for basic stimulus properties, such as frequency and intensity; at some point, these isolated properties must be woven into a pattern. Stimulus-specific adaptation (SSA), whereby neurons adapt to common stimuli but otherwise remain sensitive to other, rare stimuli, has been proposed as a low-level substrate for such abstract pattern processing. SSA has been previously investigated using ‘oddball sequences’ of tones, in which one frequency is common, the other rare. In this article, we present the first neurocomputational model of SSA and show that it can reproduce a wide range of published data. We also propose a natural generalisation of the oddball paradigm, based on Markov chains, which allows the experimenter to manipulate other characteristics of the sequence such the rate of switching. Finally, we show that a small network of neurons can distinguish novelty from mere rarity; e.g., a B stands out in the sequence ABAAA in a way that it does not in CBADE, even though it is equally probable in both. We demonstrate that cascades of depressing synapses can adequately encode this difference, whereas the simple adaptation-based models proposed to date cannot.

Suggested Citation

  • Robert Mill & Martin Coath & Thomas Wennekers & Susan L Denham, 2011. "A Neurocomputational Model of Stimulus-Specific Adaptation to Oddball and Markov Sequences," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-15, August.
  • Handle: RePEc:plo:pcbi00:1002117
    DOI: 10.1371/journal.pcbi.1002117
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002117
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002117&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flora M Antunes & Israel Nelken & Ellen Covey & Manuel S Malmierca, 2010. "Stimulus-Specific Adaptation in the Auditory Thalamus of the Anesthetized Rat," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    2. Stirzaker, David, 2005. "Stochastic Processes and Models," OUP Catalogue, Oxford University Press, number 9780198568148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    2. Matsumoto, Hiroyuki & Wesolowski, Jacek & Witkowski, Piotr, 2009. "Tree structured independence for exponential Brownian functionals," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3798-3815, October.
    3. Lee, Julian, 2023. "Poisson distributions in stochastic dynamics of gene expression: What events do they count?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    5. Wesolowski, Jacek & Witkowski, Piotr, 2007. "Hitting times of Brownian motion and the Matsumoto-Yor property on trees," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1303-1315, September.
    6. Volker Wieland & Christos Koulovatianos, 2011. "Asset Pricing under Rational Learning about Rare Disasters," 2011 Meeting Papers 1417, Society for Economic Dynamics.
    7. Jean-Marc Luck, 2019. "Parrondo games as disordered systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(8), pages 1-17, August.
    8. Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
    9. Wesołowski, Jacek, 2015. "On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 145-149.
    10. Piliszek, Agnieszka & Wesołowski, Jacek, 2016. "Kummer and gamma laws through independences on trees—Another parallel with the Matsumoto–Yor property," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 15-27.
    11. Guo, Yi & Wang, Jiang & Hong, Shouhai & Wei, Xile & Yu, Haitao & Deng, Bin, 2015. "Fractal characterization of acupuncture-induced spike trains of rat WDR neuronsAuthor-Name: Chen, Yingyuan," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 205-214.
    12. Burrell, Quentin L., 2007. "On the h-index, the size of the Hirsch core and Jin's A-index," Journal of Informetrics, Elsevier, vol. 1(2), pages 170-177.
    13. Quentin L. Burrell, 2014. "The individual author’s publication–citation process: theory and practice," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 725-742, January.
    14. Burrell, Quentin L., 2007. "Hirsch's h-index: A stochastic model," Journal of Informetrics, Elsevier, vol. 1(1), pages 16-25.
    15. Miriam Cornella & Sumie Leung & Sabine Grimm & Carles Escera, 2012. "Detection of Simple and Pattern Regularity Violations Occurs at Different Levels of the Auditory Hierarchy," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-8, August.
    16. Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.