Author
Listed:
- Michael D Daily
- George N Phillips Jr.
- Qiang Cui
Abstract
Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A “heated” simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the “corresponding states” hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways. Author Summary: Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), which undergoes chemically rate-limiting domain motions coupled to substrate binding. Since mesophiles and thermophiles often differ in functionally important motions, we compare coarse-grained simulations of AKmeso and AKthermo as well as several proline and glycine mutational variants designed to interconvert the dynamics. As might be expected, both domain motions and local unfolding motions are reduced in AKthermo relative to AKmeso. In AKthermo, both of these types of motions can be partially shifted toward more flexible AKmeso by heating or by mutating hinge prolines. However, only mutation to highly flexible glycine produces motions like those of AKmeso. Thus, the rate-limiting global transition likely depends on a combination of hinge flexibility and stability within the LID and NMP domains. Finally, this mutagenic framework can inform the rational design of flexibility and allostery in other proteins toward engineering novel biological control systems.
Suggested Citation
Michael D Daily & George N Phillips Jr. & Qiang Cui, 2011.
"Interconversion of Functional Motions between Mesophilic and Thermophilic Adenylate Kinases,"
PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-14, July.
Handle:
RePEc:plo:pcbi00:1002103
DOI: 10.1371/journal.pcbi.1002103
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.