IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002026.html
   My bibliography  Save this article

A Mathematical Framework for Estimating Pathogen Transmission Fitness and Inoculum Size Using Data from a Competitive Mixtures Animal Model

Author

Listed:
  • James M McCaw
  • Nimalan Arinaminpathy
  • Aeron C Hurt
  • Jodie McVernon
  • Angela R McLean

Abstract

We present a method to measure the relative transmissibility (“transmission fitness”) of one strain of a pathogen compared to another. The model is applied to data from “competitive mixtures” experiments in which animals are co-infected with a mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility between two strains of influenza is important in at least three contexts: 1) Within the human population antigenically novel strains of influenza arise and compete for susceptible hosts. 2) During a pandemic event, a novel sub-type of influenza competes with the existing seasonal strain(s). The unfolding epidemiological dynamics are dependent upon both the population's susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s). 3) Neuraminidase inhibitors (NAIs), while providing significant potential to reduce transmission of influenza, exert selective pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain. Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted inoculum. We demonstrate the framework's behaviour using data from ferret transmission studies, and through simulation suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for assessment of mixed transmission events has applicability beyond influenza, to other viral and bacterial pathogens. Author Summary: Determining which of two related viruses will spread from human to human more efficiently – e. g. an influenza virus that is treatable with drugs and one that is resistant to them – is important when forecasting the potential impact of an emergent novel virus or developing public health intervention strategies. However, making such measurements of relative transmissibility directly through observation, even using an animal model, is difficult. We have recently developed and published an experimental technique in which an animal is infected with both viruses of interest at once, and then allowed to mix with other animals and so transmit the infection. These experiments provide the necessary data for analysis using the novel mathematical framework that we introduce here. Our mathematical and computational results exploit the power of the experimental system, and allow us to make a quantitative estimate of the relative transmissibility of a drug-resistant influenza virus compared to its drug-sensitive counterpart. Through computer simulation, we demonstrate the wider application of our mathematical technique, and suggest design criteria for future experiments designed to measure the transmissibility of one virus (or other type of pathogen) compared to another.

Suggested Citation

  • James M McCaw & Nimalan Arinaminpathy & Aeron C Hurt & Jodie McVernon & Angela R McLean, 2011. "A Mathematical Framework for Estimating Pathogen Transmission Fitness and Inoculum Size Using Data from a Competitive Mixtures Animal Model," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-11, April.
  • Handle: RePEc:plo:pcbi00:1002026
    DOI: 10.1371/journal.pcbi.1002026
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002026
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002026&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.