IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001096.html
   My bibliography  Save this article

Flexible Cognitive Strategies during Motor Learning

Author

Listed:
  • Jordan A Taylor
  • Richard B Ivry

Abstract

Visuomotor rotation tasks have proven to be a powerful tool to study adaptation of the motor system. While adaptation in such tasks is seemingly automatic and incremental, participants may gain knowledge of the perturbation and invoke a compensatory strategy. When provided with an explicit strategy to counteract a rotation, participants are initially very accurate, even without on-line feedback. Surprisingly, with further testing, the angle of their reaching movements drifts in the direction of the strategy, producing an increase in endpoint errors. This drift is attributed to the gradual adaptation of an internal model that operates independently from the strategy, even at the cost of task accuracy. Here we identify constraints that influence this process, allowing us to explore models of the interaction between strategic and implicit changes during visuomotor adaptation. When the adaptation phase was extended, participants eventually modified their strategy to offset the rise in endpoint errors. Moreover, when we removed visual markers that provided external landmarks to support a strategy, the degree of drift was sharply attenuated. These effects are accounted for by a setpoint state-space model in which a strategy is flexibly adjusted to offset performance errors arising from the implicit adaptation of an internal model. More generally, these results suggest that strategic processes may operate in many studies of visuomotor adaptation, with participants arriving at a synergy between a strategic plan and the effects of sensorimotor adaptation.Author Summary: Motor learning has been modeled as an implicit process in which an error, signaling the difference between the predicted and actual outcome is used to modify a model of the actor-environment interaction. This process is assumed to operate automatically and implicitly. However, people can employ cognitive strategies to improve performance. It has recently been shown that when implicit and explicit processes are put in opposition, the operation of motor learning mechanisms will offset the advantages conferred by a strategy and eventually, performance deteriorates. We present a computational model of the interplay of these processes. A key insight of the model is that implicit and explicit learning mechanisms operate on different error signals. Consistent with previous models of sensorimotor adaptation, implicit learning is driven by an error reflecting the difference between the predicted and actual feedback for that movement. In contrast, explicit learning is driven by an error based on the difference between the feedback and target location of the movement, a signal that directly reflects task performance. Empirically, we demonstrate constraints on these two error signals. Taken together, the modeling and empirical results suggest that the benefits of a cognitive strategy may lie hidden in many motor learning tasks.

Suggested Citation

  • Jordan A Taylor & Richard B Ivry, 2011. "Flexible Cognitive Strategies during Motor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1001096
    DOI: 10.1371/journal.pcbi.1001096
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001096
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001096&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.