IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001077.html
   My bibliography  Save this article

A Hybrid Model of Mammalian Cell Cycle Regulation

Author

Listed:
  • Rajat Singhania
  • R Michael Sramkoski
  • James W Jacobberger
  • John J Tyson

Abstract

The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to ‘qualitative’ modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1) and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.Author Summary: The physiological behaviors of cells (growth and division, differentiation, movement, death, etc.) are controlled by complex networks of interacting genes and proteins, and a fundamental goal of computational cell biology is to develop dynamical models of these regulatory networks that are realistic, accurate and predictive. Historically, these models have divided along two basic lines: deterministic or stochastic, and continuous or discrete; with scattered efforts to develop hybrid approaches that bridge these divides. Using the cell cycle control system in eukaryotes as an example, we propose a hybrid approach that combines a continuous representation of slowly changing protein concentrations with a discrete representation of components that switch rapidly between ‘on’ and ‘off’ states, and that combines the deterministic causality of network interactions with the stochastic uncertainty of random events. The hybrid approach can be easily tailored to the available knowledge of control systems, and it provides both qualitative and quantitative results that can be compared to experimental data to test the accuracy and predictive power of the model.

Suggested Citation

  • Rajat Singhania & R Michael Sramkoski & James W Jacobberger & John J Tyson, 2011. "A Hybrid Model of Mammalian Cell Cycle Regulation," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-10, February.
  • Handle: RePEc:plo:pcbi00:1001077
    DOI: 10.1371/journal.pcbi.1001077
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001077
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001077&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.