IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000885.html
   My bibliography  Save this article

CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences

Author

Listed:
  • Wayne Delport
  • Konrad Scheffler
  • Gordon Botha
  • Mike B Gravenor
  • Spencer V Muse
  • Sergei L Kosakovsky Pond

Abstract

Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.Author Summary: Evolution in protein-coding DNA sequences can be modeled at three levels: nucleotides, amino acids or codons that encode the amino acids. Codon models incorporate nucleotide and amino acid information, and allow the estimation of the rate at which amino acids are replaced () versus the rate at which they are preserved (). The ratio has been used in thousands of studies to detect molecular footprints of natural selection. A serious limitation of most codon models is the unrealistic assumption that all non-synonymous substitutions occur at the same rate. Indeed, amino acid models have consistently demonstrated that different residues are exchanged more or less frequently, depending on incompletely understood factors. We derive and validate a computational approach for inferring codon models which combine the power to investigate natural selection with data-driven amino acid substitution biases from alignments. The addition of amino acid properties can lead to more powerful and accurate methods for studying natural selection and the evolutionary history of protein-coding sequences. The pattern of amino acid substitutions specific to a given alignment can be used to compare and contrast the evolutionary properties of different genes, providing an evolutionary analog to protein family comparisons.

Suggested Citation

  • Wayne Delport & Konrad Scheffler & Gordon Botha & Mike B Gravenor & Spencer V Muse & Sergei L Kosakovsky Pond, 2010. "CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-17, August.
  • Handle: RePEc:plo:pcbi00:1000885
    DOI: 10.1371/journal.pcbi.1000885
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000885
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000885&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.